Autors: Borovska, P. I., Marinova, M. P., Tsanov, V. T.
Title: Code optimization of multiple sequence alignment software tool MSA-BG on GPU-accelerated computing infrastructures
Keywords: multi-sequence alignment, GPU-accelerated Computing, parallel computing, CUDA programming

References

  1. H. Carrillo and D. Lipman, “The Multiple Sequence Alignment Problem in Biology,” SIAM Journal of Applied Mathematics, vol. 48, no. 5, 1988, pp. 1073-1082.
  2. L. Wang and T. Jiang, “On the complexity of multiple sequence alignment”, Journal of Computational Biology, vol. 1, no. 4, 1994, pp. 337–348, doi:10.1089/cmb.1994.1.337.
  3. V. Marx, The Big Challenges of Big data https://www.staff.ncl.ac.uk/alan.ward/Molecular_Microbiology/Lecture2/Data_Challenges.pdf
  4. C.Hung, Y. Lin, and others “CUDA ClustalW: An efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs”, Journal of Computational Biology and Chemistry, Elsevier 2015
  5. K. Li, “ClustalW-MPI: ClustalW Analysis Using Distributed and Parallel Computing,” Journal of Bioinformatics, vol.19, no. 12, 2003, pp. 1585–1586.e
  6. P. Borovska, V. Gancheva, “Massively Parallel Algorithm for Multiple Sequence Alignment Based on Artificial Bee Colony”, PRACE Whitepaper, 2013, http://www.prace-ri.eu/IMG/pdf/wp114.pdf
  7. Borovska, P., Gancheva, V., Georgiev, I., Ivanova, D., Hybrid parallel multiple sequence alignment based on artificial bee colony on the supercomputer JUQUEEN, Proceedings - 2017 European Conference on Electrical Engineering and Computer Science, EECS 2017; Bern, EECS 2017, pp. 47-51, Electronic ISBN: 978-1-5386-2085-4, DOI: 10.1109/EECS.2017.18
  8. C.Hung, Y. Lin, et all, “CUDA ClustalW: An efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs”, Journal of Computational Biology and Chemistry, Elsevier 2015
  9. D. Karaboga, “An Idea Based On Honey Bee Swarm for Numeric Optimization” Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005, mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf.
  10. V. Gancheva, “SOA based multi-agent approach for biological data searching and integration,” 4th International Conference on Applied Mathematics and Computer Science AMACS 2019, in International Journal of Biology and Biomedical Engineering, ISSN: 1998-4510, Volume 13, 2019, pp. 32-37.
  11. V. Gаnchеvа and H. Stoev, “DNA sequence alignment method based on trilateration,” In: Rojas I., Valenzuela O., Rojas F., Ortuño F. (eds) Bioinformatics and Biomedical Engineering, IWBBIO 2019, Lecture Notes in Computer Science, vol. 11466, Springer, Cham, pp. 271- 283, https://doi.org/10.1007/978-3-030-17935-9_25.
  12. NCBI home page, http://www.ncbi.nlm.nih.gov
  13. CUDA Toolkit 10.1 https://developer.nvidia.com/cuda-downloads
  14. NVIDIA Visual Profiler https://developer.nvidia.com/nvidia-visual-profiler

Issue

AIP Conference Proceedings, vol. 2172, pp. 020006-1-10, 2019, United States, AIP Publisher, https://doi.org/10.1063/1.5133488; ISBN: 978-0-7354-1919-3

Copyright AIP Conference Proceedings

Full text of the publication

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus