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Abstract. Multiple biological sequences alignment is one of the fundamental tasks in computational biology. The 
problem is NP-hard and has been subjected to intense research during the last 10 years. Exact MSA algorithms such as 
Clustawl have considerable serial sections (for building up the guide tree) which limit the efficiency of code 
parallelization and optimization. In the era of Big data, the Big genomic data ecosystem has accumulated huge amounts 
of genomic data provoking the challenge for innovative massively parallel algorithmic paradigms targeted for the 
efficient exploitation of the abandon parallel hardware resources within the high performance computing infrastructure. 
The goal of our investigation is to design and implement software tool for massively parallel multiple sequence 
alignment based on our randomized method for massively parallel multiple sequence alignment targeted for GPU 
accelerated computing infrastructures. Parallel performance evaluation analysis shows efficient scalability in respect to 
data size and machine size.  

INTRODUCTION 
 

In biology, multiple sequence alignment (MSA) of DNA, RNA or protein sequences is one of the fundamental 
and central tasks that should be accomplished before phylogenic reconstruction, modeling of protein structure, or 
gene annotation [1,2]. An increasing number of biological modeling methods depend on the precise assembly of 
multiple sequencing sequences. Multiple sequence alignment is a fundamental approach for research in several areas 
of molecular biology and bioinformatics, such virulence studies, drug and vaccine design, phylogenetic tree 
reconstruction, 3D structure protein prediction, and conservative domain identification. A wide spectrum of 
algorithms have been developed as part of the attempt to improve accuracy and effectiveness of the alignment, but 
there is not yet a single MSA method that can generate accurate and relevant alignments for all types of biological 
tests within an acceptable computational time. In the era of big data the number of the deployed genomic databases 
and their capacity is exponentially growing. The accumulated genomic data has been doubled up every 5 months 
within the last decade. The major sources of genomic data acquisition within the big genomic data ecosystem [3] 
(next generation DNA sequencing technologies, “omics” data generation, in silico experimental data, genome 
databases, cancer genome databases, and the related technologies Internet of medical Things (IomT) and cloud 
technologies) have accumulated huge amounts of genomic data provoking challenges for discovering innovative 
methods and designing and implementing fast parallel software tools for processing and analyses.  
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Exact MSA algorithms such as Clustawl [4,5] have considerable serial sections (for building up the guide tree) 
which limit the efficiency of code parallelization and optimization. Fast processing of MSA requires scalable 
parallel computing platforms and innovative massively parallel algorithmic paradigms targeted for the efficient 
exploitation of the abandon parallel hardware resources within the high performance computing infrastructure. 

In [6,7] we have suggested massively parallel randomized method for MSA and have implemented and deployed 
the software tool MSA_BG_ABC based on the metaphor and algorithmic framework of the metaheuristics ABC 
(Artificial Bee Colony) algorithm exploiting the principles of diversification and intensification. Based on the 
concept of architectural and algorithmic spaces correlation we have optimized the code building up hybrid parallel 
MPI/OpenMP implementation that was ported on the German supercomputer JUQUEEN. Experimental results have 
shown speedup up to 70 times on the supercomputer JUQUEEN for machine size of 512 computing cores. 

The goal of our investigation is to explore the potential parallelism of the our randomized method  for massively 
parallel MSA in respect to GPGPU code optimization, upgrade our software tool MSA_BG and evaluate the 
efficiency, speed up and scalability of the optimized code on GPU-accelerated infrastructure.  

 

RANDOMIZED METHOD FOR MASSIVELY PARALLEL MULTIPLE BIOLOGICAL 
SEQUENCE ALIGNMENT 

The method is iterative and comprises the following steps (Fig.1): 
 

1. Align the lengths of the biological sequences in respect to the longest ones +1 by inserting the required 
number of blank positions (gaps) for each of the shorter sequences so that a matrix of sequences of the 
same length is obtained; 

2. Generate independent random multiple alignments of the input set by applying a pair of operations 
"insert - delete" of gaps to each sequence such that: 

The set of sequences within a working set is denoted by SEQ,  
SEQ = SEQ1 ⋃	SEQ2 ⋃	… SEQn 
Where, SEQi is the set of symbols within a sequence i, and i is the number of the sequence within the 
working set of all sequences SEQ;  
The set of positions of letters (A, C, G, T - nucleotides) within a given sequence is denoted by Li, while 
the set of positions of gaps within a sequence SEQi is denoted by Gi, SEQi = Li ⋃	Gi and Li = SEQi – Gi, 
where Li is the set of positions of letters in SEQi, and Gi is the set of positions of the gaps in SEQi 
The position to insert a gap is denoted by INSi and the position to delete a gap - by DELi, obligatory  
INSi ∈	Li and DELi ∈ Gi; 

a) Obligatory the position of DELi is different from INSi, INS≠DEL, where DELi is a position of 
a gap within the sequence SEQi, and INSi is obligatory a position holding a symbol, not a gap;  

b) In case DELi>INSi, the symbols (letters and gaps) between positions INSi and DELi are shifted 
one position to the right (fig.1); 

c) In case DELi<INSi, the symbols (letters and gaps) between positions INSi and DELi are shifted 
one position to the left (fig.2); 

3. For each aligned working set the global grade of the quality of solution is evaluated as follows: 
a) For the working set of the aligned sequences for each column the number of identical 

symbols is counted up and for each column the symbol of maximum rate of occurrence is determined ;  
b) The maximum similarity level of each column is determined as the ratio of the number of the 

symbol of maximum occurrence rate to the number of the sequences within the working set (%); 
c) The global grade of the alignment is computed as the average of the maximum similarity 

levels of the columns. 
4. The sequence of maximum similarity (sequence-favorite) is created as an ordered sequence of the column 

symbols of maximum occurrence rate (fig.3); 
5. For each sequence of the aligned working set a counter is setup that evaluates the local similarity level as 

follows (fig.4): 
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ݐ݊ݑܥ ൌ 	∑ ܵ
ଵ    ܵ ൌ ቐ

1	݂݅	 ܲ ൌ ܨ
0	݂݅	 ܲ ൌ ܲܣܩ
െ1	݂݅	 ܲ ് ܨ

  (1) 

Where ܲ is the symbol in position k of sequence i, and ܨ is the symbol in position k of the sequence-
favorite. 
6. Select the best alignment. The global grades of the random alignments are compared and the alignment of 

the highest global grade is selected as the next initial working set. 
7. In case stop criteria is not satisfied – to step 2.  
8. Terminate parallel computation and output results. 

 
 

 
Figure 1. In case DELi>INSi, the symbols (letters and gaps) 

between positions INSi and DELi are shifted one position to the 
right 

 
Figure 2. In case DELi<INSi, the symbols (letters and gaps) 

between positions INSi and DELi are shifted one position to the 
left 

 
 

SEQUENCE OF MAXIMUM SIMILARITY (SEQUENCE – FAVORITE) 

A C G C T Т A G A G C T G C A T T C A T  

 

COLUMN MAXIMUM SIMILARITY LEVEL (%) / COLUMN NUMBER 

 
LOCAL 
SIMILARITY 
(COUNTERS) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

80 60 100 60 60 60 60 40 60 40 60 80 60 80 80 40 80 60 60 80 
A C G G T T A G A G C T G C G T A G C T 15-5=10 

- T G C T G A - A C G T G C A - T C T T 12+3.0-5=7 

A G G T - G A T - A C T C - A A T C A A 9+3.0-8=4 

A C G C T T C - G - C A G C A - T C A T 14+3.0-3=11 

A C G C - T C G A G - T - C A T T G A T 15+3.0-2=13 

 
Figure 3. The sequence of maximum similarity (sequence-favorite) is created as an ordered sequence of the column symbols of 

maximum occurrence rate (Steps 3 and steps 4 of the method) 
 
 
 
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 S 

1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 -1 1 -1 -1 -1 1 10 

2 0 -1 1 1 1 -1 1 0 1 -1 -1 1 1 1 1 0 1 1 -1 1 7 

3 1 -1 1 -1 0 -1 1 -1 0 -1 1 1 -1 0 1 -1 1 1 1 -1 4 

4 1 1 1 1 1 1 -1 0 -1 0 1 -1 1 1 1 0 1 1 1 1 11 

5 1 1 1 1 0 1 -1 1 1 1 0 1 0 1 1 1 1 -1 1 1 13 

 
Figure 4. For each sequence of the aligned working set a counter is setup that evaluates the local similarity level (step 5 of the 

method) 
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DESIGN AND IMPLEMENTATION OF SOFTWARE TOOL MSA_BG_CUDA FOR 
MULTIPLE BIOLOGICAL SEQUENCE ALIGNMENT 

The software tool MSA_BG_CUDA has been designed and implemented based on the massively parallel 
randomized method for multiple biological sequence alignment and applying GPGPU computing in order to exploit 
software parallelism of the application and parallel hardware resources of the GPU-accelerated computing 
infrastructure. The software tool MSA_BG_CUDA is written in CUDA C++, which is efficient in creating 
massively parallel applications with CUDA and facilitates the deployment of high performance algorithms 
accelerated by thousands of parallel threads running on GPUs. The optimized code of the software tool 
MSA_BG_CUDA comprises kernel function that is divided into 4 blocks – each containing 256 threads (Fig.5). The 
multithreaded program is partitioned into blocks of threads that execute independently from each other. CUDA 
programs contain a sequential part, called a kernel. The kernel represents the operations to be formed by a single 
thread and is invoked as a set of concurrently executing threads. Kernel functions cannot be recursive, they cannot 
have a variable number of arguments, and they must return void. They are marked with the __global__ specifier and 
are called by the host.  

 

 

Figure 5. Example of running of kernel function msaAbcKernel on GPU – accelerated computing infrastructure 
 
The organization of blocks and grids has impact on thread communication and synchronization. Threads within a 

thread block can communicate through a per-block shared memory (PBSM) and may synchronize using barriers. 
However, threads located in different blocks cannot communicate or synchronize directly. Besides the PBSM, there 
are four types of memory: per-thread private local memory, global memory for data shared by all threads, texture 
memory and constant memory. Texture memory and constant memory can be regarded as fast read-only caches. 

The parallelization approach of the software tool MSA_BG for GPGPU processing (CUDA-based 
implementation) is shown in Fig.6.  

EXPERIMENTAL FRAMEWORK 

In order to verify and validate as well as to evaluate the performance and efficiency of the software tool 
MSA_BG we have conducted a series of experiments on two GPU-accelerated computing infrastructures (Tabl.1) 
and be able to make a comparative performance analysis. The nVidia GTX1080ti – based platform comprises 28 
streaming multiprocessors (SMP), each of it with 128 cores, total 3584 GPU cores and six-core CPU (12 threads). 
The nVidia GTX1060 – based platform includes total 1280 GPU cores. The experimental GPU-accelerated 
infrastructures are actually highly parallel multi-core systems giving the opportunity to exploit efficiently massive 
data parallelism of MSA algorithms. The operating system is Scientific Linux. 

The parallel computing platform is CUDA in order to use the computational power of the CUDA-enabled GPU’s 
General-Purpose computing on Graphics Processing Units. The CUDA platform is a software layer that gives direct 
access to the parallel computational units for the execution of compute kernels. CUDA 10 is used as powerful 
software development platform for building GPU-accelerated applications providing all the components needed to 
build applications for NVIDIA's platforms and high performance computing (HPC) workloads [13].  

GPU computing involves the following phases: (1) Copy data from main memory to GPU memory; (2) parallel 
computation by all cores; (3) copy the result data from GPU memory to main memory. 
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Figure 6. The parallelization approach for GPGPU processing of MSA  
 

 
Table 1 Parameters of the experimental GPU-accelerated infrastructures 

Parameters I7 GTX 1080Ti I7 GTX1060 
CUDA cores/MP SMP – 128 / 3584 CUDA cores SMP-128 / 1280 CUDA cores 
Max number of threads per MP 2048 1024 
Max number of threads per block 1024 512 
Memory 11GB  6GB 

  
The benchmark datasets used to conduct the experiments comprise three groups of biological sequence datasets. 

The first group of datasets encompasses sequences of the Swine Flu (N1H1) viral RNA’s, the second group 
comprises human breast cancer associated genes sequences (BRAC1 and BRAC2) and third group - test protein 
sequences, downloaded from NCBI [12]. The last group sequences can be classified into eight test sets: (1) 100 
sequences with length of 97, (2) 100 sequences with length of 498, (3) 100 sequences with length of 1523, (5) 1000 
sequences with length of 97, (6) 1000 sequences with length of 498, (7) 1000 sequences with length of 1002, and (8) 
1000 sequences with length of 1523.  

The goal of the experiments is to make performance comparison of performance parameters on both computing 
platforms (specified in Tabl.1) of the software tool MSA_BG_ABC (multithreaded version - C++, OpenMP), that is 
based on the massively parallel randomized method for multiple biological sequence alignment (presented in 
Section 1) which applies the metaphor and algorithmic framework of ABC metaheuristics and is parallelized in 
respect to multithreading, on the one hand, and the software tool MSA_BG_CUDA implementing the same method 
with GPGPU – oriented code optimization (nVidia CUDA). 

 

EXPERIMENTAL RESULTS AND ANALYSIS 

In order to make comparative analysis of the scalability in respect to machine size and data size of the software 
tool MSA_BG_CUDA and software tool MSA_BG_ABC we have conducted experiments with the 3 groups of 
benchmark datasets on the two computing platforms. The execution times for the case study of the 3 benchmark 
datasets groups scaling the number of iterations – 1000, 10000, 100000 are shown in Fig.7.  
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Execution times of the software tools MSA_BG_ABC (scaled up to 12 threads) and MSA_BG_CUDA for the 
case study of short sequences (100 elements – H1N1 swine virus) is shown in Fig. 8, and for the case study of 
sequences of length 1000 elements (swine virus H1N1) – in Fig. 9. 

 

 
 

Figure 7. Scalability of MSA_BG_CUDA on GPU-accelerated infrastructures for the case study of the 3 benchmark data sets 
groups scaling the number of iterations – 1000, 10000, 100000 

 

 
 

Figure 8. Execution times of MSA_BG_ABC and MSA_BG_CUDA on GPU-accelerated infrastructures for the case study of 
swine virus data set H1N1 for 100 iterations 
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Figure 9. Execution times of MSA_BG_ABC and MSA_BG_CUDA on GPU-accelerated infrastructures for the case study of 

the swine virus dataset (H1N1) for 1000 iterations 
 

 
 

Figure 10. Speedup of MSA_BG_CUDA versus MSA_BG_ABC (12 threads) on GPU-accelerated infrastructure for the case 
study of the swine virus dataset (H1N1) for 1000 iterations 

 
 
The estimated speedup of MSA_BG_CUDA versus MSA_BG_ABC (12 threads) on GPU-accelerated 

infrastructure for the case study of the swine virus dataset (H1N1) for 1000 iterations is presented in Fig.10. 
Parallel activities profiling of the software tool MSA_BG_CUDA has been performed for the two GPU 

accelerated infrastructures under investigation. In order to perform profiling we have used NVIDIA Visual Profiler 
[14]. This profiler is part of the CUDA Toolkit and actually is a cross-platform performance profiling tool providing 
statistical data for software developers for optimizing CUDA C/C++ applications.  

Timeline View of the MSA_BG_CUDA runtime on the platform GTX 1060 for the case study of H1N1 
benchmark data set is shown in Fig. 11, and Timeline View of the MSA_BG_CUDA runtime on the platform GTX 
1080ti for the case study of H1N1 benchmark data set is shown in Fig. 12. 

Time to copy data from main memory to GPU memory - Host/GPU and vice versa – time to copy results from 
GPU memory to main memory - GPU/Host are important parameters to estimate. We can inspect in detail these 
parameters with Visual Profiler, which provides an automated analysis engine to identify optimization opportunities. 

Performance analysis of experimental results shows that the designed and implemented software tool 
MSA_BG_CUDA targeted for GPU-accelerated computing infrastructures shows efficiency in parallelizing MSA 
and scales up efficiently in respect to data size and machine size.  
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 Figure 11. Profiling of MSA_BG_CUDA kernel activities on GPU-accelerated infrastructure GTX 1060 for the case study of 
H1N1 dataset benchmark. 

 

    
 

Figure 12. Profiling of MSA_BG_CUDA kernel activities on GPU-accelerated infrastructure GTX1080ti for the case study 
H1N1 dataset benchmark. 

 
For small number of iterations the software tool MSA_ABC_BG outperforms the CUDA version due to the 

considerable time to copy data from main memory to GPU memory - Host/GPU and vice versa – time to copy 
results from GPU memory to main memory - GPU/Host comparable to computational time.  

For large number of iterations, however, the software tool MSA_BG_CUDA outperforms MSA_ABC_BG 
because the portion of time to copy data from/to GPU memory/Host becomes less significant compared to the time 
for the sequences processing. The application of the tool MSA_BG_CUDA is targeted to processing Big genomic 
data and, therefore, we consider the experimental performance results satisfactory. 

Scaling time consumed to copy data from main memory to GPU memory - Host/GPU and vice versa – time to 
copy results from GPU memory to main memory - GPU/Host on both GPU platforms for the case study of swine 
virus H1N1 benchmark data set in microseconds for different number of iterations is shown in Fig. 13. Scaling time 
of system overhead on both GPU platforms for the case study of 1000 iterations varying the length of the sequences 
(498, 1002 and 1523) in microseconds for 1000 iterations is shown in Fig. 14. 
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Figure 13. Scaling time consumed to copy data from main memory to GPU memory - Host/GPU and vice versa – time to 
copy results from GPU memory to main memory - GPU/Host on both GPU platforms for the case study of swine virus H1N1 

benchmark data set in microseconds for various number of iterations (1000, 10000, 100000) 
 

 
 

Figure 14. Scaling time of system overhead on both GPU platforms for the case study of 1000 iterations varying the length 
of the sequences (498, 1002 and 1523) in microseconds  

 
Performance analysis of experimental results shows that the designed and implemented software tool 

MSA_BG_CUDA targeted for GPU-accelerated computing infrastructures shows efficiency in parallelizing MSA 
and scales up efficiently in respect to data size and machine size. For small number of iterations the software tool 
MSA_ABC_BG outperforms the CUDA version due to the considerable time to copy data from main memory to 
GPU memory - Host/GPU and vice versa – time to copy results from GPU memory to main memory - GPU/Host 
comparable to computational time. For large number of iterations, however, the software tool MSA_BG_CUDA 
outperforms MSA_ABC_BG because the portion of time to copy data from/to GPU memory/Host becomes less 
significant compared to the time for the sequences processing. The application of the tool MSA_BG_CUDA is 
targeted to processing Big genomic data and, therefore, we consider the experimental performance results 
satisfactory. 

CONCLUSION AND FUTURE WORK 

In this paper we present the design and implementation of MSA_BG_CUDA software tool based on the 
proposed randomized method for massively parallel multiple sequence alignment. The code is optimized for target 
GPU-accelerated infrastructures. We have conducted a series of experiments for the purpose of parallel performance 
evaluation utilizing 3 benchmark data sets – Swine Flu (N1H1) viral RNA sequences, human breast cancer 
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associated genes sequences (BRAC1 and BRAC2) and test protein sequences from NCBI. Experimental analysis 
shows efficient scalability of the parallel system in respect to machine size and problem size. Furthermore, we have 
performed comparative analysis of the parameters of the software tool MAS_BG_CUDA versus our software tool 
MSA_ABC_BG developed on the basis of the metaphor and algorithmic framework of metaheuristics ABC 
algorithm and ported on the supercomputer JUQUEEN. Experimental results show that for greater problem size 
MAS_BG_CUDA outperforms MSA_ABC_BG. In the future, we intend to use this version of the software tool 
MAS_BG_CUDA to be used as a prototype and port it on GPU-accelerated supercomputer infrastructure. 
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