Autors: Lozanov, Y. Y., Tzvetkova, S. G., Petleshkov, A. S.
Title: Use of machine learning techniques for classification of thermographic images
Keywords: thermal images, machine learning techniques, diagnostics, im

Abstract: The possibilities for using machine learning techniques in the classification of thermographic images for the purposes of technical diagnostics are examined in the paper. A program for extracting the statistical characteristics of thermographic images has been developed. A machine learning model for classification of thermographic images of induction motors has been trained and tested.

References

  1. Y. Olivatti, C. Penteado, B. P. T. Aquino Jr, R. Maia, Analysis of artificial intelligence techniques applied to thermographic inspection for automatic detection of electrical problems, 2018 IEEE International Smart Cities Conference (ISC2), 2018, DOI: 10.1109/ISC2.2018.8656724
  2. Z. Jia, Z. Liu, C. Vong, M. Pecht, A Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images, IEEE Access Vol. 7, pp 12348-12359, 2019, DOI: 10.1109/ACCESS.2019.2893331
  3. M. S. Jadin, K. H. Ghazali, S. Taib, Thermal condition monitoring of electrical installations based on infrared image analysis, 2013 Saudi International Electronics, Communications and Photonics Conference, 2013, DOI 10.1109/SIECPC.2013.6550790
  4. A.S.N. Huda, S. Taib, Suitable features selection for monitoring thermal condition of electrical equipment using infrared thermography, Infrared Physics & Technology vol. 61, 2013, pp 184-191, DOI 10.1016/j.infrared.2013.04.012
  5. Z. Hui, H. Fuzhen, An Intelligent Fault Diagnosis Method for Electrical Equipment Using Infrared Images, Proceedings of the 34th Chinese Control Conference, 2015
  6. Y. Lozanov, S. Tzvetkova, A methodology for processing of thermographic images for diagnostics of electrical equipment, 2019 11th Electrical Engineering Faculty Conference (BulEF)
  7. I. Ullah, F. Yang, R. Khan, L. Liu, H. Yang, B. Gao, Predictive Maintenance of Power Substation Equipment by Infrared Thermography Using a Machine-Learning Approach, Energies 2017, 10, 1987; doi:10.3390/en10121

Issue

2020 12th Electrical Engineering Faculty Conference (BulEF), 2020, Bulgaria, IEEE, DOI 10.1109/BulEF51036.2020.9326046

Copyright Institute of Electrical and Electronics Engineers IEEE

Full text of the publication

Цитирания (Citation/s):
1. Sakalli, G., Koyuncu, H., Discrimination of Electrical Motor Faults in Thermal Images by using First-order Statistics and Classifiers, 2022, HORA 2022 - 4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedings, Ankara, Turkey, 9 - 11 June 2022, DOI: 10.1109/HORA55278.2022.980001, ISBN: 978-166546835-0, pp. 1-5 - 2022 - в издания, индексирани в Scopus или Web of Science
2. Sakalli, G., Koyuncu, H., Identification of asynchronous motor and transformer situations in thermal images by utilizing transfer learning-based deep learning architectures, Measurement: Journal of the International Measurement Confederation, Volume 207, 15 February 2023, DOI: 10.1016/j.measurement.2022.112380, ISSN: 02632241, pp. 1-15 - 2022 - в издания, индексирани в Scopus или Web of Science
3. Nahiyan, B. N., Das, O., A Survey on Neural and Non-Neural Network Based Approaches to Classify Images and Signals, 2023 3th International Conference on Electrical, Computer and Communication Engineering, ECCE 2023, 23-25 February 2023, DOI: 10.1109/ECCE57851.2023.10101667, ISBN: 979-835034536-0, pp.1-6. - 2023 - в издания, индексирани в Scopus или Web of Science
4. Sakalli, G., Koyuncu, H., Categorization of Asynchronous Motor Situations in Infrared Images: Analyses with ResNet50, 2022 International Conference on Data Analytics for Business and Industry, ICDABI 2022, 25 October 2022, DOI: 10.1109/ICDABI56818.2022.10041492, ISBN: 978-166549058-0, pp. 114-118. - 2022 - в издания, индексирани в Scopus или Web of Science
5. Dahmer dos Santos L., Canuto J., Thom de Souza R., Ruiz Aylon R., Thermographic image-based diagnosis of failures in electrical motors using deep transfer learning, Engineering Applications of Artificial Intelligence, Vol. 126, November 2023, ISSN 09521976, DOI 10.1016/j.engappai.2023.107106 - 2023 - в издания, индексирани в Scopus или Web of Science
6. Akdemir, B., Aytac, E.E., Tosun, E.M., Yuksel, S.E., Classification Of Solid Waste Using Computer Vision Techniques, 26th IEEE Signal Processing: Algorithms, Architectures, Arrangements, and Applications, SPA 2023, Poznan, 20 September 2023 through 22 September 2023, Volume 2023-September, pp. 136 – 141, ISBN 979-835030498-5, DOI 10.23919/SPA59660.2023.10274454. - 2023 - в издания, индексирани в Scopus или Web of Science
7. Kulkarni V., Hulipalled R., Kundu M., Simha J.B., Abhi S.,Thermal Image-Based Fault Detection Using Machine Learning and Deep Learning in Industrial Machines: Issues-Challenges and Emerging Trends, Lecture Notes in Networks and SystemsVolume 798 LNNS, Pages 581 - 596, 2023 4th International Conference on Image Processing and Capsule Networks, ICIPCN 2023, ISBN: 978-981997092-6, DOI: 10.1007/978-981-99-7093-3_39 - 2023 - в издания, индексирани в Scopus или Web of Science
8. Xu, L., Teoh, S. S., Ibrahim, H., A deep learning approach for electric motor fault diagnosis based on modified InceptionV3, Scientific Reports, Volume 14, Issue 1, December 2024, DOI: 10.1038/s41598-024-63086-9, ISSN: 20452322, pp. 1-15. - 2024 - в издания, индексирани в Scopus или Web of Science
9. Calderon-Uribe, U., Lizarraga-Morales, R.A., Guryev, I.V., Fault Diagnosis in Induction Motors through Infrared Thermal Images Using Convolutional Neural Network Feature Extraction. Machines 2024, 12, 497. https://doi.org/10.3390/machines12080497 - 2024 - в издания, индексирани в Scopus или Web of Science

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus