Autors: Lozanov, Y. Y., Tzvetkova, S. G., Petleshkov, A. S.
Title: Use of machine learning techniques for classification of thermographic images
Keywords: thermal images, machine learning techniques, diagnostics, image classification

Abstract: The possibilities for using machine learning techniques in the classification of thermographic images for the purposes of technical diagnostics are examined in the paper. A program for extracting the statistical characteristics of thermographic images has been developed. A machine learning model for classification of thermographic images of induction motors has been trained and tested.

References

  1. Y. Olivatti, C. Penteado, B. P. T. Aquino Jr, R. Maia, Analysis of artificial intelligence techniques applied to thermographic inspection for automatic detection of electrical problems, 2018 IEEE International Smart Cities Conference (ISC2), 2018, DOI: 10.1109/ISC2.2018.8656724
  2. Z. Jia, Z. Liu, C. Vong, M. Pecht, A Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images, IEEE Access Vol. 7, pp 12348-12359, 2019, DOI: 10.1109/ACCESS.2019.2893331
  3. M. S. Jadin, K. H. Ghazali, S. Taib, Thermal condition monitoring of electrical installations based on infrared image analysis, 2013 Saudi International Electronics, Communications and Photonics Conference, 2013, DOI 10.1109/SIECPC.2013.6550790
  4. A.S.N. Huda, S. Taib, Suitable features selection for monitoring thermal condition of electrical equipment using infrared thermography, Infrared Physics & Technology vol. 61, 2013, pp 184-191, DOI 10.1016/j.infrared.2013.04.012
  5. Z. Hui, H. Fuzhen, An Intelligent Fault Diagnosis Method for Electrical Equipment Using Infrared Images, Proceedings of the 34th Chinese Control Conference, 2015
  6. Y. Lozanov, S. Tzvetkova, A methodology for processing of thermographic images for diagnostics of electrical equipment, 2019 11th Electrical Engineering Faculty Conference (BulEF)
  7. I. Ullah, F. Yang, R. Khan, L. Liu, H. Yang, B. Gao, Predictive Maintenance of Power Substation Equipment by Infrared Thermography Using a Machine-Learning Approach, Energies 2017, 10, 1987; doi:10.3390/en10121

Issue

2020 12th Electrical Engineering Faculty Conference (BulEF), 2020, Bulgaria, IEEE, DOI 10.1109/BulEF51036.2020.9326046

Copyright Institute of Electrical and Electronics Engineers IEEE

Full text of the publication

Вид: публикация в национален форум с межд. уч., публикация в реферирано издание, индексирана в Scopus