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Abstract — The possibilities for using machine learning 

techniques in the classification of thermographic images for the 

purposes of technical diagnostics are examined in the paper. A 

program for extracting the statistical characteristics of 

thermographic images has been developed. A machine learning 

model for classification of thermographic images of induction 

motors has been trained and tested. 
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I. INTRODUCTION  

The early detection and determination of the type of fault 
occurring in electrical systems is vital for modern industry, as 
power outages or production processes interruption can have 
a serious impact on social and economic activities carried out 
in an organization. To ensure the continuity of power supply 
and the reliability of the electrical equipment used in industrial 
processes, regular timely inspections must be carried out. 
Traditional preventive maintenance plays an important role in 
preventing accidents, ensuring the safety of electrical systems 
and the reliability of equipment operation, but it cannot fully 
meet the needs, leading to sudden failures. This feature leads 
to the increasing application of modern approaches such as 
technical monitoring and online diagnostic systems. 

Thermal imaging is an ideal technology for temperature 
monitoring, as it allows fully display of the thermal field of a 
machine or its components, without physical interaction (non-
destructive) and provides results in a very short period of time. 
In this context, the thermal imaging technique shows very 
good results when used as a method for online diagnostics, 
detecting faults such as: defective connections between 
conductors or between conductors and switchgear or other 
equipment, incorrect selection or design of switchgear and 
equipment, overload of individual elements of the electrical 
equipment, defects in cables, insulators and electrical 
machines [3]. 

Despite the impressive development of the application of 
thermal imaging for the diagnostics of rotating electrical 
machines, some important questions remain that pose the 
future challenges to research in this area. One of them is based 
on the lack of objective temperature thresholds, allowing the 
detection of various defects or anomalies that can be applied 
to any motor and in any operating condition. Typically, 
industrial plants develop their own thresholds, adapted for 
each machine, which are derived from their own experience in 
this field. This increases the dependence of this technique on 
the expert opinion of the examiner and makes its application 
more subjective. In addition, the lack of knowledge about the 

thermal field patterns associated with each specific failure is 
also a serious limitation that can be overcome over time.  

In order to achieve a certain degree of automation of the 
process of processing and analysis of thermographic images 
of induction motors, procedures (algorithms) are developed to 
identify the thermal field distributions of serviceable motors 
and motors with different types of faults. The use of these 
algorithms in combination with a suitable mathematical model 
allows to distinguish anomalies such as: damage to the cooling 
system, damage to the bearing units, damage to the windings 
and others. The base structure of a system for automated 
analysis and classification of thermal images is shown in 
Fig.1. In some cases, computer vision techniques are used to 
extract the region of interest, and in others, this is done by 
manual selection. The final analysis, after the extraction of the 
potential problem regions, can be carried out by a specialist, 
by thermal comparison or AI algorithms [1, 2]. 

 

Fig. 1. Structure of a system for automated analysis of thermal images 

Some of the processing algorithms use the statistical 
indicators obtained for the part of the image corresponding to 
the studied object, to distinguish the individual states of the 
machine, as well as to quantify the size or severity of the 
damage. The improvement of these algorithms and models is 
developing in the direction of using the information about the 
technical condition, which can be obtained from the thermal 
transients occurring in the machine. 

II. MACHINE LEARNING TECHNIQUES 

Taking into account the great complexity of the physical 
processes (mathematical models) arising from the imaging of 
thermographic images on the one hand, and the significant set 
of operational and human factors influencing the 
measurement results on the other hand, it is clear that the use 
of the classical programing approach for compiling 
mathematical models and algorithms for image classification 
is impractical. This requires the use of machine learning and 
deep learning techniques, which have already become 
extremely widespread in the modern world. 



The application of machine learning techniques in the 
classification of thermographic images is appropriate, as 
machine learning algorithms build a mathematical model 
based on sample data known as "training set", which allows 
predictions or decisions to be made without the need of 
complex mathematical models. 

Machine learning techniques use different methods and 
models to train computers to perform tasks for which there is 
no completely satisfactory algorithm. The choice of a specific 
model and method for its training depends mainly on the 
nature of the problem to be solved, the number of input 
parameters and the number of potential output states [7]. 

 The classic k-nearest neighbors (k-NN) model and 
various modifications of the support vector machine (SVM) 
model have been widely used in the classification of images. 

A. К-nearest neighbors model 

At the heart of this model is an important assumption, 
called the compactness hypothesis which states that if the 
measure of object similarity is introduced successfully 
enough, then similar objects are much more likely to lie in the 
same class than in different ones. In this case, the boundary 
between the classes has a fairly simple shape and the classes 
form compactly localized regions in the object space. 

The k-nearest neighbors (k-NN) algorithm is a 
nonparametric model used to classify and recognize images. 
k-NN is a model that uses a local approximation of the 
generalized vector of input parameters in multidimensional 
space to assign input data to a given class.  

When this model is used for image classification the 
number of nearest neighbor points k is usually bigger than one. 
The number of nearest neighbors k is a user-defined constant 
and the newly introduced generalized vector of input 
parameters (query or test point) is classified by assigning it to 
the class that is most common among k nearest neighbors to 
the test point already known points. 

The number of nearest neighbor points k is one of the 
parameters which can increase the accuracy of classification. 
The optimal value of the number of considered neighboring 
points depends on the data. In general, larger values of k 
reduce the effect of noise on classification, but make the 
boundaries between classes less clear. Depending on the 
number and type of adjacent points considered, k-NN models 
are classified into the following groups: 

• Nearest neighbor model (k =1). The classified vector 

x  belongs to the class iy , to which the nearest object 

of the training data belongs ix ; 

• k Nearest  neighbors model (k >1). To increase the 
reliability of the classification, the classified vector 

belongs to the class iy , to which most of its neighbors 

belong - k closest  to it points from the training data 

;ix  

• Weighted k nearest neighbors model. In this model, 
the classified vector is assigned to the class that gains 
the greatest total weight among the k closest points of 

the training data. ix . 

In the case of a large number of the considered 
neighboring points k>5, in order to increase the accuracy of 

classification, additional indicators are introduced, through 
which weight coefficients are determined for the individual 
nearest neighboring points. Frequently used indicator is the 
distance between the test point and the specific neighboring 
point d. In this case, the weighting factor for the ith neighbor 
point is determined by the dependence 

ii dw /1= .   (1) 

Regardless of the number of adjacent points considered, 
the k-NN classification model can be described by the 
following equation: 
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where: ),( jiw  is the weight function, which evaluates the 

degree of importance of the ith adjacent point for the 
classification of the input vector j. 

B. Suport vector machine model 

Suport vector machine (SVM) models are a set of 
supervised training algorithms used for classification and 
regression. The classical SVM algorithm is a non-
probabilistic, binary linear classifier, which limits its practical 
application for the classification of thermographic images. 
However, there are improved modifications of this model, 
allowing its conversion to a nonlinear classifier (kernel 
method), as well as algorithms for obtaining probabilistic 
estimates based on SVM (Platt scaling) [5]. 

Generally speaking, the Support vector machine model is 
based on the construction of a hyper-plane or multiple hyper-
planes in multidimensional space that can be used to classify 
or regress the input data. Each hyperplane can be described by 
a set of points x that satisfies the condition: 
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where: ω
r

 is the normal vector of the hyper-plane; 

b - the distance of the hyper-plane passing through the 
boundary points of one group of elements and the 
separating hyper-plane. 

The parameter ω
r

/b  determines the relative margin width 

between the separating hyper-plane and the boundary hyper-
planes. In the case of linearly separable data classes, this 
parameter is unchanged (hard margin), while in the cases 
when the data are not linearly separable this parameter is 
variable. 

For the use of the SVM model in the classification of 
thermographic images for the purposes of technical 
diagnostics, it is necessary to recur to the application of a 
multi-class nonlinear classifier with a soft margin. The 
classification model is presented with the following equation: 
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where λ  is a parameter that is determined by the balance 
between increasing the relative width of the margin 
and ensuring the correct classification of the individual 
points. 



III. IMAGE PROCESSING 

The application of machine learning for the classification 
of thermographic images requires the latter to be processed in 
order to form the vector of input data. The methodology for 
performing the processing is discussed in detail in [6]. 

A program in the Matlab R2019b software environment 
has been developed to perform the processing of 
thermographic images. The program allows the input data to 
be set in the form of thermographic images with different 
pseudo-color representations of the thermal field or CSV files 
containing the temperature matrix. Regardless of the type of 
input data, they are converted to a grayscale image. The 
grayscale image of an induction motor that is used in the 
training set is shown in Fig.2. 

 

Fig. 2. Gray scale image of an induction motor 

After image conversion, the histogram-based statistical 
features (mathematical expectation, variance, standard 
deviation, skewness, kurtosis and entropy) are calculated.. 

The next step in the processing is the segmentation of the 
resulting grayscale image. For this purpose, the value of the 
threshold intensity against which the image is converted into 
binary is calculated. The Otsu method is used to determine the 
value of the threshold intensity. 

The resulting segmented image is visualized in the user 
interface, where the operator selects the region of interest 
(ROI). The selection of ROI is shown in Fig. 3. 

 

Fig. 3. Selection of the region of interest in the segmented image 

The choice to manually enter the region of interest is 
imposed by the peculiarities of the processed images - the 
presence of more than one element whose intensity values are 
above the threshold value used for segmentation. 

The processing continues with the determination of the 
features of the gray-scale co-occurrence matrix (contrast, 
correlation, energy and homogeneity) and the component-
based features of intensity (minimum and maximum 
intensity, mean intensity, variance and standard deviation for 
ROI) [4]. 

Table 1 shows the values of the individual parameters 
forming the vector of the input data. 

TABLE I.  INPUT PARAMETERS 

Histogram-based statistical features 

№ Feature Value 

1 Mean  126,9424 

2 Variance 4008 

3 Standard deviation 63,3087 

4 Skewness -0,122 

5 Kurtosis 2,0914 

6 Entropy 0,0362 

Features of the gray scale co-occurrence matrix 

7 Contrast 4922,1 

8 Correlation -0,0023 

9 Energy 0,000040195 

10 Homogeneity 0,0483 

Component-based features of intensity 

11 Maximum intensity 254 

12 Minimum intensity 4 

13 Average intensity 181,6767 

14 Variance 2254 

15 Standard deviation 47,4761 

This procedure is repeated for all selected images, and the 
resulting vectors are recorded in tabular form to be used for 
training, testing, and validation of machine learning models. 

IV. RESULTS FROM THERMAL IMAGE CLASSIFICATION BY 

MACHINE LEARNING MODELS 

Based on the obtained statistical characteristics, two 
machine learning models (kNN and SVM) for classification 
of thermographic images were developed and trained. Each of 
the models is trained to distinguish three states of the 
induction motor presented in the thermographic image - 
serviceable (good), fault in the cooling system, and fault in the 
bearings. 

With the kNN model, the approach of the weighted nearest 
neighboring points is chosen. The number of the nearest 
neighboring points needed to assign the inputs to a given class 
is k = 3. 

The SVM model is a multiclass linear classifier with a soft 
margin, as the number of hyper-planes for the realized 
classification model is 32/)1( =−= YYK . 

The statistical characteristics of a training set of 100 
thermographic images of induction motors were used for the 
training of both models. In order to expand the recognizing 
capabilities of the models, the training set includes 



thermographic images of induction motors with different 
design, shaft location, and operating environment. The 
training set also contains images in which the engine is not 
oriented on one of the axes of the field of view or is 
incompletely covered by the field of view. 

To evaluate the performance of the two models, a 
classification of the same set of sixty test images was made. 
The testing set contains 40 images of serviceable motors, 10 
images of motors with ventilation problems, and 10 images of 
motors with bearing faults. 

When processing the test image set using the kNN 
classification model, a result was obtained in which 47 images 
were classified as serviceable (good), 11 images were 
classified as bearing fault and 2 were classified as a ventilation 
problem. The relative error in predicting the condition of the 
motors of the kNN model is 35.33%. The inaccuracies in the 
interpretation of the test set of images are represented by the 
confusion matrix shown in Fig.4. From the confusion matrix, 
it is clear that the developed kNN model is not able to 
successfully distinguish the characteristics corresponding to 
the problems with motor ventilation. 

 

Fig. 4. Confusion matrix for classification with the k-NN model 

 
Fig. 5. Confusion matrix for classification with the SVM model 

When processing the test image set using the SVM 
classification model, a result was obtained in which 42 images 
were classified as good, 11 images were classified as bearings 
fault, and 7 were classified as a ventilation problem. The 
relative error in predicting the condition of the motors with the 
SVM model is 16.7%. The inaccuracies in the interpretation 
of the test set of images are represented by the confusion 
matrix shown in Fig.5. 

The results from the image classification with the SVM model 
show that this model achieves better accuracy in classifying 
images into a given class. The SVM model successfully 
recognizes and distinguishes the characteristics corresponding 
to the various technical conditions. 

V. CONCLUSION 

The application of machine learning techniques in the 
processing and classification of thermographic images 
significantly facilitates these processes, leading to a reduction 
in their duration and labor absorption. 

The proposed image processing methodology and 
classification model can be successfully applied to other types 
of electrical equipment. All that is needed is to retrain the fault 
detection model. 

An increase in the accuracy of prediction of the considered 
technical states can be achieved by analyzing the relevance of 
individual statistical characteristics and reducing the number 
of input parameters. 
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