Детайли за публикацията
(Publication details)

Autors: Brusev, T. S.
Title: Power supply circuits for mobile wireless applications
Keywords: power supply, CMOS 0.35 μmprocess, Cadence, LTE wireless communication standard

Abstract: Wireless battery-powered portable electronic devices give opportunity to the people to have faster communication with each other. The increased functionality of mobile phones enables large data packages to be transmitted in the real time. Decreasing of power losses in the electronic building blocks of the transmitter will increase the battery life and system run-time. Power amplifier (PA) is the most energy consuming block. In this paper are considered various power supply circuit architectures suitable for portable electronic devices. Buck dc-dc converter using Pulse-Width Modulation (PWM) designed on CMOS 0.35 μm process is presented. The power losses in the output switching transistors, filter inductor and filter capacitor and evaluated. The efficiency performance of the converter as function of switching frequency fs and inductor current ripple ΔiL is investigated.


  1. Iwai, H. Future of nano CMOS technology. 2014 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 18-20 June 2014, pp. 1-3.
  2. Durand, C., Casset, F., Legrand, B., Faucher, M., Renaux, P., Mercier, D.; Renaud, D.; Dutartre, D.; Ollier, E., Ancey, P., Buchaillot, L. Characterization of IN-IC integrable in-plane nanometer scale resonators fabricated by a silicon on nothing advanced CMOS technology. IEEE 21st International Conference on Micro Electro Mechanical Systems., Jan. 2008, pp. 1016-1019.
  3. Bohr, T., Nanotechnology Goals and Challenges for Electronic Applications. IEEE Transactions on Nanotechnology, Volume 1, No. 1, March 2002, pp. 56-62,.
  4. Borkar S., Design Challenges of Technology Scaling. Micro, IEEE, Volume 19, July/August 1999, pp. 23-29.
  5. Sery G., S. Borkar., and V. De. Life is CMOS: Why Chase the Life After. Proceedings of the IEEE/ACM Design Automation Conference, June 2002, pp. 78-83.
  6. Hassan M., L. Larson, V. Leung, and P. Asbeck. A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications. IEEE Journal of Solid-State Circuits, Volume 47, no.5, May 2012, pp. 1185-1198.
  7. Gonai, T., T. Kiyokawa, H. Yamazaki, M. Goto. Development of the lithium ion battery system for space: report on the result of development of the lithium ion battery system for space. Telecommunications Energy Conference, INTELEC '03. The 25th International, 2003, pp. 234-240.
  8. Jaeseo Lee, G. Hatcher. Evaluation of Fully-Integrated Switching Regulators for CMOS Process Technologies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume 15, No.9, pp. 1017-1027, 2007.
  9. B. Saho and G. Rincon-Mora. An Accurate. Low-Voltage, CMOS Switching Power Supply With Adaptive On-Time Pulse-Frequency Modulation (PFM) Control. IEEE Journal of Solid-State Circuits, Volume 39, No.1, 2004, pp. 3-14.
  10. Kurson V., S. G. Narenda, V. K. De, and E. G. Friedman. Monolithic DC-DC Converter Analysis and MOSFET Gate Voltage Optimization. Proceedings of the IEEE International Symposium on Quality Electronic Design, March 2003, pp. 279-284.
  11. Hassan, M. Wideband high efficiency CMOS envelope amplifiers for 4G LTE handset envelope tracking RF power amplifiers. University of California, San Diego, 2012.
  12. Mohan N.,J. Undeland, W. Robbins, Power Electronics, JWES, NY, 1989.
  13. Erickson R. W., D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2001.
  14. J. Ham, H. Jung, H. Kim, W. Lim, D. Heo and Y. Yang1. A CMOS Envelope Tracking Power Amplifier for LTE Mobile Applications. Journal of Semiconductor Technology and Science. Volume 14, No.2, April 2014, pp. 235-245.
  15. Kurson, V. Supply and Threshold Voltage Scalind Techniques in CMOS Circuits, University of Rochester, NY, 2004.
  16. Y. Li, J. Lopez, D.Y.C. Lie, K. Chen, S. Wu, Tzu-Yi Yang, Gin-Kou Ma. Circuits and System Design of RF Polar Transmitters Using Envelope-Tracking and SiGe Power Amplifiers for Mobile WiMAX. IEEE Transactions on Circuits and Systems I, Volume 58, No.5, May 2011, pp. 893-90.
  17. Pinon. V., F. Hasbani, A. Giry, D. Pache, and C. Gamier. A single-chip WCDMA envelope reconstruction LDMOS PA with 130MHz switched-mode power supply. IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2008, pp. 564-636.
  18. Sankman J., M. K. Song, and D. Ma. A 40-MHz 85.8%-Peak-Efficiency Switching-Converter-Only Dual-Phase Envelope Modulator for 2-W 10-MHz LTE Power Amplifier. Symposium on VLSI Circuits Digest of Technical Papers, June 2014.
  19. Kitchen J. N., C. Chu, S. Kiaei, and B. Bakkaloglu. Combined linear and Δ-modulated switch-mode PA supply modulator for polar transmitters. IEEE Journal of Solid-State Circuits, Volume 44, No. 2, Feb. 2009, pp. 404–413.
  20. Wang F., D. Kimball, D. Lie, P. Asbeck, L. Larson. A Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier. IEEE Journal of Solid-State Circuits, Volume 42, No. 6, June 2007, pp. 1271-1281.
  21. Lee J. P., H. Cha, D. Shin, K. J. Lee, D. W. Yoo, and J. Y. Yoo. Analysis and Design of Coupled Inductors for Two-Phase Interleaved DC-DC Converters. Journal of Power Electronics, Volume 13, No. 3, May 2013, pp. 339-348.

E+E, vol. 3-4, issue 50, pp. 15 – 22, 2015, Bulgaria, ISSN 0861-4717

Full text of the publication

Вид: статия в списание, публикация в реферирано издание

Въведена от: доц. д-р Тихомир Сашев Брусев