Autors: Gospodinova, E. G. Title: Practical stability with respect to h-manifolds for impulsive control functional differential equations with variable impulsive perturbations Keywords: practical stability; h-manifolds; impulsive functional diffe Abstract: The present paper is devoted to the problems of practical stability with respect to h-manifolds for impulsive control differential equations with variable impulsive perturbations. We will consider these problems in light of the Lyapunov–Razumikhin method of piecewise continuous functions. The new results are applied to an impulsive control cellular neural network model with variable impulsive perturbations References Issue
|
Цитирания (Citation/s):
1. Design and practical stability of a new class of impulsive fractional-like neural networks - 2020 - в издания, индексирани в Scopus или Web of Science
2. Fractional Lotka-Volterra-type cooperation models: Impulsive control on their stability behavior - 2020 - в издания, индексирани в Scopus или Web of Science
3. Practical exponential stability with respect to h-manifolds of discontinuous delayed Cohen-Grossberg neural networks with variable impulsive perturbations - 2021 - в издания, индексирани в Scopus или Web of Science
4. Neural-Impulsive Pinning Control for Complex Networks Based on V-Stability - 2020 - в издания, индексирани в Scopus или Web of Science
5. Stability of stochastic delay differential systems with variable impulses due to logic choice - 2021 - в издания, индексирани в Scopus или Web of Science
6. On the stability with respect to manifolds of reaction-diffusion impulsive control fractional-order neural networks with time-varying delays - 2021 - в издания, индексирани в Scopus или Web of Science
7. Exponential Stability for a Class of Linear Delay Differential Systems Under Logic Impulsive Control - 2021 - в издания, индексирани в Scopus или Web of Science
Вид: публикация в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus