Autors: Ivanova, V., Tashev, T. A., Draganov, I. R.
Title: Detection of IoT based DDoS Attacks by Network Traffic Analysis using Feedforward Neural Networks
Keywords: Botnet; Data exfiltration; DDoS; Feedforward neural network;

References

    Issue

    International Journal of Circuits, Systems and Signal Processing, vol. 16, pp. 653-662, 2022, United States, North Atlantic University Union NAUN, ISSN 1998-4464

    Copyright NAUN

    Цитирания (Citation/s):
    1. Yaser, A.L., Mousa, H.M., Hussein, M., Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder, Future Internet, vol. 14, iss. 8, August 2022, Art. num. 240 - 2022 - в издания, индексирани в Scopus или Web of Science
    2. Tolanur, J., Chaudhari, S., DDoS Attacks Analysis with Cyber Data Forensics using Weighted Logistic Regression and Random Forest, Proceedings - IEEE International Conference on Device Intelligence, Computing and Communication Technologies, DICCT 2023 pp. 564-569, 2023 - 2023 - в издания, индексирани в Scopus или Web of Science
    3. Mousa, A.K., Abdullah, M.N., An Improved Deep Learning Model for DDoS Detection Based on Hybrid Stacked Autoencoder and Checkpoint Network, Future Internet 15(8), 278, 2023 - 2023 - в издания, индексирани в Scopus или Web of Science
    4. Al-Fayoumi, M., Abu Al-Haija, Q., Capturing low-rate DDoS attack based on MQTT protocol in software Defined-IoT environment, Array 19,100316, 2023 - 2023 - в издания, индексирани в Scopus или Web of Science
    5. Parmar, A., Lamkuche, H., Distributed Denial of Service Attack Detection Using Sequence-To-Sequence LSTM, Communications in Computer and Information Science 1999, pp. 39-53 - 2024 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus