Autors: Ganev, B. T., Ivanov A. I., Marinov, M. B., Nikolov, N. L., Kochev, L. L.
Title: Pendulum Experimental Study and Analysis with MEMS Accelerometer
Keywords: mathematical pendulum; micro-mechanical accelerometer sensor

Abstract: Advances in micro-technologies in recent decades have enabled the production of miniature, inexpensive, integrated accelerometers and gyroscopes suitable for use in the analysis of the motion of various objects, mechanisms, and machines. This paper presents an approach for conducting experiments with a mathematical pendulum using a three-axial micromechanical accelerometer, a low-budget microcontroller, and a wireless communication module. Experiments have shown that the use of integrated digital accelerometers to study the kinetics of a mathematical pendulum offers the opportunity to perform a much more in-depth analysis of the behaviour of oscillating systems compared to conventional analysis. One of the merits of the research is the comparison of the measured results with the theoretical ones, obtained from a numerical solution of a mathematical model of the system, which does not take into account any resistances.

References

  1. [1] P. Palmieri, “A phenomenology of Galileo’s experiments with pendulums,” British Society for the History of Science, Vol. 42(4), 2009, DOI: 10.1017/S0007087409990033. [2] C.D. Andriesse, “Huygens: The Man Behind the Principle,” Cambridge University Press, 2005, ISBN 978-0-521-85090-2. [3] W. Tobin, “The life and science of Léon Foucault: The man who proved the earth rotates,” Cambridge University Press, 2003, ISBN 9780521808552. [4] P. Amore, A. Aranda, “Improved Linstedt-Poincare method for the solution of nonlinear problems,” Jour. Sound Vib, Vol. 283(3-5), pp. 1115-1136, 2005. [5] Koleda P, Hrckova M, Adamik M, “Identification of pendulum oscillation parameters using mems accelerometer,” MM Sci J [Online], 2016. [6] Sarrafan A, Azimi S, Bahreyni B, Golnaraghi F, “Demonstration of a Nonlinear Angular Rate Sensor based on Internal Resonance,” 2020 IEEE Sensors Applications Symposium, SAS 2020 - Proceedings, DOI: 10.1109/SAS48726.2020.9220040. [7] Deflecting arm force sensor 150542, “Biegebalken-Kraftsensor, Festo Didactic, Technische Daten,” 2005. [8] STMicroelectronics, “LSM6DS3 - iNEMO inertial module. Always-on 3D accelerometer and 3D gyroscope,” 2017, Doc.ID 026899 Rev 10. [9] Espressif Systems, “ESP32-WROOM-32D & ESP32-WROOM-32U Datasheet v2.1,” 2021 . [10] Shenzhen Honcell Energy Co., Ltd, “Li-ion Polymer Rechargeable Battery, Specification Sheet, v 3.0,” 2018. [11] D. Nikolov, M. Marinov, B. Ganev and T. Djamijkov, “Nonintrusive Measurement of Elevator Velocity Based on Inertial and Barometric Sensors in Autonomous Node,” in 43rd International Spring Seminar on Electronics Technology (ISSE), 10-14 May 2020, Demanovska Valley, Slovakia, 2020. [12] S. A. Quadri and O. Sidek, “Error and Noise Analysis in an IMU using Kalman Filter,” Int. J. Hybrid Inf. Technol., vol. 7, no. 3, pp. 39–48, 2014, doi: 10.14257/ijhit.2014.7.3.06.

Issue

2021 30th International Scientific Conference Electronics, ET 2021, 2021, Bulgaria, DOI 10.1109/ET52713.2021.9579906

Цитирания (Citation/s):
1. Zhang, C., Xiao, T., Ran, L., Zhu, Z., Song, L. The Output Nonlinear Mechanism and the Compensation Method of Digital Closed-Loop Quartz Flexible Accelerometer. IEEE Sensors Journal 23(18), pp. 21029-21039. 2023. - 2023 - в издания, индексирани в Scopus или Web of Science

Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science