Autors: Dimitrov, S. I.
Title: Diophantine approximation with one prime of the form p=x^2+y^2+1
Keywords: diophantine approximation, primes

Abstract: Let ε>0 be a small constant. In the present paper we prove that whenever η is real and constants λ_i satisfy some necessary conditions, then there exist infinitely many prime triples p_1, p_2, p_3 satisfying the inequality |λ_1 p_1 + λ _2 p_2 + λ_3 p_3+η|< ε and such that p_3=x^2 + y^2 +1.

References

    Issue

    Lith. Math. J., vol. 61, issue 4, 2021, Lithuania, DOI https://link.springer.com/article/10.1007/s10986-021-09538-5

    Цитирания (Citation/s):
    1. Li X., Ge W., A Diophantine approximation problem with unlike powers of primes, 2025, AIMS Mathematics, issue 1, vol. 10, pp. 736-753, DOI 10.3934/math.2025034, eissn 24736988 - 2025 - в издания, индексирани в Scopus
    2. Hu L., Liu F., Liu S., An equation involving prime numbers and one Linnik prime, 2025, Ramanujan Journal, issue 3, vol. 67, DOI 10.1007/s11139-025-01114-6, issn 13824090, eissn 15729303 - 2025 - в издания, индексирани в Scopus

    Вид: пленарен доклад в международен форум, публикация в издание с импакт фактор, индексирана в Scopus