Autors: Tsokov, S. A., Lazarova, M. K., Aleksieva-Petrova, A. P. Title: Evolving 1D Convolutional Neural Networks for Human Activity Recognition Keywords: Convolutional neural networks, Genetic algorithms, Neural ne Abstract: Human activity recognition is an important research field with a variety of applications in healthcare monitoring, fitness tracking and in user-adaptive systems in smart environments. The problem of human activity recognition can be solved using a 1D convolutional neural network (CNN) trained with accelerometric data. The design of an appropriate CNN architecture for solving a particular problem is not an easy task and usually requires considerable specialized knowledge to setup the network hyperparameters based on experimental evaluation. This article proposes an automated approach for CNN architecture optimization that uses genetic algorithms. The suggested approach for evolution of the architecture of 1D CNN is evaluated on two data sets for accelerometer-based human activity recognition and the results show that the GA based CNN design generates CNN architectures with competitive performance compared to the usage of other manually designed CNN models. References Issue
Copyright ACM |
Цитирания (Citation/s):
1. O. Magdy and A. Atia, "Human Activity Recognition in Maintenance Centers to Reduce Wasted Time," 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), 2022, pp. 118-124, doi: 10.1109/MIUCC55081.2022.9781695 - 2022 - в издания, индексирани в Scopus или Web of Science
2. O. Magdy, A. Atia, Human Activity Recognition in Car Workshop, International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 13, No. 4, 2022, DOI: 10.14569/IJACSA.2022.0130495 - 2022 - в издания, индексирани в Scopus или Web of Science
3. Raman, S., M. Abuhaikal, Data Driven Casing Collar Feature Detection and Identification for Automated Depth Estimation for Wireline, Fourth EAGE Digitalization Conference & Exhibition, Vol. 2024, No. 1, pp. 1-5, 2024, European Association of Geoscientists & Engineers, https://doi.org/10.3997/2214-4609.202439084 - 2024 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
4. Kumar, L., S. Murugan, Robust Human Activity Recognition using Improved Heuristic Search Algorithm with Deep Autoencoder Model, International Journal of Engineering Trends and Technology, 71 (8), pp. 152-160, 2023, DOI: 10.14445/22315381/IJETT-V71I8P213 - 2023 - в издания, индексирани в Scopus или Web of Science
Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus