Autors: Nikolov, S., Sinapov, P. V., Kralov, I. M., Ignatov, I. P.
Title: An analytical study of the dual mass mechanical system stability
Keywords: stability, friction, electric motors, numerical analysis

Abstract: In this paper an autonomous, nonlinear model of five ordinary differential equations modeling the motion of a dual mass mechanical system with universal joint is studied. The model is investigated qualitatively. On the base of the stability analysis performed, we obtain that the system is: i) in an equilibrium state, or ii) in a structurally unstable behavior when equilibrium states disappear. In case (i) the system is in a normal technical condition and in case (ii) hard break‐downs take place.

References

  1. C. Chicone, 1999, Ordinary Differential Equations with Applications, New York, Springer-Verlag
  2. X. Liao, L. Wang and P. Yu,, 2007, Stability of Dynamical Systems, Amsterdam, Elsevier
  3. J. Den Hartog, 1950, Forced vibration with combined viscous and Coulomb damping, Philos. Mag. VII, Volume 9, pp. 801-817
  4. A. Guran, F. Feeny, N. Hinrichs and K. Popp, 1998, A Historical Review on Dry Friction and Stick-Slip Phenomena, Appl. Mech. Rev., Volume 51, pp. 321-341
  5. M. Kunze, 2000, Non-smooth Dynamical Systems, Berlin, Springer-Verlag
  6. R. Burridge and L. Knopoff, 1967, Model and theoretical seismicity, Bull. Seism. Soc. Am., Volume 57, pp. 341-371
  7. J. Carlson, J. Langer and B. Shaw, 1994, Dynamics of earthquake faults, Rev. Mod. Phys, Volume 66, pp. 657-670
  8. S. Nikolov, 2006, STRUCTURAL STABILITY ANALYSIS AND BIFURCATION BEHAVIOR OF SOME PHASE SYNCHRONIZED SYSTEMS, Eng. Mechanics, Volume 13, pp. 413-423
  9. Feeny, B.F., Moon, F.C., 1993, Bifurcation sequences of a Coulomb friction oscillator, Nonl. Dyn., Volume 4, pp. 25-37
  10. R. Morselli, R. Zanasi and G. Sandoni, 2006, Dynamic Model of an Electro-hydraulic Three Point Hitc, Comp. Mod. Dyn. Systems, Volume 12, pp. 347-362
  11. Y. Li and Z. Feng,, 2004, Bifurcation and chaos in friction-induced vibration, Comm. Nonl. Sci. Num. Simul., Volume 9, pp. 633-647
  12. P. Sinapov, I. Kralov and K. Nedelchev, 2010, MASS MOMENTS OF INERTIA EFFECT ON FRICTION OSCILLATIONS ENDURANCE IN TWO-COMPONENT MECHANICAL SYSTEM, AIP Conf. Proc., Volume 1293, pp. 21-29
  13. N. Chetaev, 1965, Stability of Motion, Moscow, Nauka
  14. D. Arrowsmith and C. Place, 1992, Dynamical Systems: Differential Equations, maps, and Chaotic Behaviour, London, Chapman & Hall
  15. L. Shilnikov, A. Shilnikov, D. Turaev and L. Chua, 2001, Methods of Qualitative Theory in Nonlinear Dynamics, Singapore, World Scientific
  16. S. Nikolov, 2003, FIRST LYAPUNOV VALUE AND BIFURCATION BEHAVIOR OF SPECIFIC CLASS OF THREE-DIMENSIONAL SYSTEMS, Int. J. of Bifurcation and Chaos, Volume 14, pp. 2811-2823

Issue

37th Conference Applications of Mathematics in Engineering and Economics (AMEE'11), vol. 1410, pp. 24-31, 2011, United States, AIP, DOI 978-0-7354-0984-2/0094-243X

Copyright AIP

Вид: публикация в международен форум, публикация в реферирано издание