Autors: Nenchev M. N., Deneva, M. A.
Title: Development of Interference Wedged Structures for Direct Registration and Quantitative Evaluation of Hg in Gas Discharge in Lamps and in Air
Keywords: interference wedged structure, Hg, gas discharge, luminescen

Abstract: We develop simple and reliable technique, based on suitable Interference Wedged Structures (IWSs) as small-size, tile-like 5x2x0.1 cm device – IWS Analyzer (IWSA; Composed IWSA) for registration and quantitative evaluation of Hg (harmful pollutant) in gas discharge in lamps and in air. The main advantage of the IWSA technique is its applicability for direct observation with the naked eye of an illuminated IWSA through diffused or direct light from the object under study. We present theory, simulations, and appropriate realization for IWSA.

References

  1. Nenchev, M., Stoykova, E., 1993, Interference wedge properties relevant to laser applications: transmission and reflection of the restricted light beams, Opt. Quant. Electron., Volume 25, pp. pp.789-799
  2. Stoykova, E., Nenchev, M., 2010, Gaussian beam interaction with an air-gap Fizeau interferential wedge, J. Opt. Soc. Am. A, Volume 27, pp. pp. 58 - 68
  3. Nenchev, M., Stoykova, E., Deneva, M., 2018, Composite wavelength tunable wedged interference structures with increased free spectral range, Opt. Quant. Electron., Volume 50(12), pp. 433
  4. Deneva, M., Stoykova, E., Nenchev, M., Barbe, R., Keller, J-C., 2010, Diode laser light spectrally fixed at an atomic absorption line, Opt. & Laser Technology, Volume 42, pp. pp. 301 - 307
  5. Deneva, M. Nenchev, M., Stoykova, E., 2019, Combined implementation of controllable beam splitting and wavelength division multiplexing using tunable interference wedged structures, Proc. SPIE, Volume 11029, pp. 110290S
  6. Byeong-Jin Ye, Byoung-Gwon Kim, Man-Joong Jeon, Se-Yeong Kim, Hawn-Cheol Kim, Tae-Won Jang, Hong-Jae Chae, 2016, Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication, Annals of Occupational and Environmental Medicine, Volume 28(1), DOI: https://doi.org/10.1186/s40557-015-0086-8, pp. 5
  7. Department of Health, Center for Environmental Health, 2019, Health-Based Air Concentrations for Mercury Vapor, e-book, New York, New York State Department of Health, <https://www.health.ny.gov/environmental/chemicals/mercury/docs/air_concentrations_vapor.pdf>, Дата на последен преглед (Last accessed on): 20.08.2021
  8. Rey-Raap, N., Gallardo, A., 2011, Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry, Waste Management, Volume 32(5), pp. 944-8
  9. Aucott, M., McLinden, M., Winka, M., 2003, Release of mercury from broken fluorescent bulbs, J. Air Waste Manag Assoc., Volume 53(2), pp. 143-51
  10. Mattus, C. H., 1999, Measurements of Mercury Released from Amalgams and Sulfide Compounds, Oak Ridge, USA, Chemical Technology Division
  11. Byeong-Jin Ye, Byoung-Gwon Kim, Man-Joong Jeon, Se-Yeong Kim, Hawn-Cheol Kim, Tae-Won Jang, Hong-Jae Chae, Won-Jun Choi, Mi-Na Ha, Young-Seoub Hong, 2016, Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication, Annals of Occupational and Environmental Medicine, Volume 28, pp. 5
  12. Demtroder W., 1995, Laser spectroscopy, 2nd enlarged ed., Berlin Heidelberg, Springer-Verlag
  13. Deglr6328 at English Wikipedia, 2005, File:Fluorescent lighting spectrum peaks labelled.gif, <https://commons.wikim edia.org/wiki/File:Fluorescent_lighting_spectrum_peaks_labelled.gif>, Дата на последен преглед (Last accessed on): 07.09.2021
  14. Ivanov, K., Deneva, M., Nenchev, M., "Study of the Hg atoms light emission of the electric parameters of the gas discharge", will be published

Issue

2021 XXX International Scientific Conference Electronics (ET), pp. 1 - 6, 2021, Bulgaria, IEEE, DOI 10.1109/ET52713.2021.9580156 ; ISBN: 978-166544518-4

Copyright IEEE Xplore

Вид: публикация в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus