Autors: Staneva A. D., Dimitrov D. K., Gospodinova, D. N., Vladkova T. G. Title: Antibiofouling Activity of Graphene Materials and Graphene-Based Antimicrobial Coatings Keywords: graphene nanomaterials; biofilms; antimicrobial coatings; an Abstract: Microbial adhesion and biofilm formation is a common, nondesirable phenomenon at any living or nonliving material surface in contact with microbial species. Despite the enormous efforts made so far, the protection of material surfaces against microbial adhesion and biofilm formation remains a significant challenge. Deposition of antimicrobial coatings is one approach to mitigate the problem. Examples of such are those based on heparin, cationic polymers, antimicrobial peptides, drug-delivering systems, and other coatings, each one with its advantages and shortcomings. The increasing microbial resistance to the conventional antimicrobial treatments leads to an increasing necessity for new antimicrobial agents, among which is a variety of carbon nanomaterials. The current review paper presents the last 5 years’ progress in the development of graphene antimicrobial materials and graphene-based antimicrobial coatings that are among the most studied. Brief information about the significanc References Issue
Copyright MDPI Full text of the publication |
Цитирания (Citation/s):
1. I. M. Oliveira, M. Gomes, L. C. Gomes, M. F. R. Pereira, O. S. G. P. Soares, and F. J. Mergulhão, “Performance of Graphene/Polydimethylsiloxane Surfaces against S. aureus and P. aeruginosa Single- and Dual-Species Biofilms,” Nanomater. 2022, Vol. 12, Page 355, vol. 12, no. 3, p. 355, Jan. 2022, doi: 10.3390/NANO12030355. - 2022 - в издания, индексирани в Scopus или Web of Science
2. M. Kryuchkov, J. Adamcik, and V. Katanaev, “Bactericidal and Antiviral Bionic Metalized Nanocoatings,” Nanomater. 2022, Vol. 12, Page 1868, vol. 12, no. 11, p. 1868, May 2022, doi: 10.3390/NANO12111868. - 2022 - в издания, индексирани в Scopus или Web of Science
3. I. Atkinson, “Antibiofilm Activity of Biocide Metal Ions Containing Bioactive Glasses (BGs): A Mini Review,” Bioeng. 2022, Vol. 9, Page 489, vol. 9, no. 10, p. 489, Sep. 2022, doi: 10.3390/BIOENGINEERING9100489. - 2022 - в издания, индексирани в Scopus или Web of Science
4. M. K. Chow, C. E. Jee, and S. P. Yeap, “Qualitative and quantitative determination of critical coagulation concentration for pristine graphene oxide in various ionic compounds,” Results Eng., vol. 16, p. 100682, Dec. 2022, doi: 10.1016/J.RINENG.2022.100682. - 2022 - в издания, индексирани в Scopus или Web of Science
5. M. Alfe et al., “Coating of Flexible PDMS Substrates through Matrix-Assisted Pulsed Laser Evaporation (MAPLE) with a New-Concept Biocompatible Graphenic Material,” Nanomater. 2022, Vol. 12, Page 3663, vol. 12, no. 20, p. 3663, Oct. 2022, doi: 10.3390/NANO12203663. - 2022 - в издания, индексирани в Scopus или Web of Science
6. M. J. Romeu et al., “How do Graphene Composite Surfaces Affect the Development and Structure of Marine Cyanobacterial Biofilms?,” Coatings 2022, Vol. 12, Page 1775, vol. 12, no. 11, p. 1775, Nov. 2022, doi: 10.3390/COATINGS12111775. - 2022 - в издания, индексирани в Scopus или Web of Science
7. M. Garren, M. Ashcraft, D. Crowley, E. J. Brisbois, and H. Handa, “Derivatization of graphene oxide nanosheets with tunable nitric oxide release for antibacterial biomaterials,” J. Biomed. Mater. Res. Part A, Jan. 2023, doi: 10.1002/JBM.A.37493. - 2023 - в издания, индексирани в Scopus или Web of Science
8. D. Bartolomeo et al., “Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments,” Nanomater. 2023, Vol. 13, Page 381, vol. 13, no. 3, p. 381, Jan. 2023, doi: 10.3390/NANO13030381. - 2023 - в издания, индексирани в Scopus или Web of Science
9. A.-I. ; Aghasoleimani et al., “Graphene-Related Nanomaterials for Biomedical Applications,” Nanomater. 2023, Vol. 13, Page 1092, vol. 13, no. 6, p. 1092, Mar. 2023, doi: 10.3390/NANO13061092. - 2023 - в издания, индексирани в Scopus или Web of Science
10. X. Lu, R. Zaia, G. M. Quinto, L. C. S Camargo, R. T. Ribeiro, and A. M. Carmona-Ribeiro, “Transient Coatings from Nanoparticles Achieving Broad-Spectrum and High Antimicrobial Performance,” Pharmaceuticals 2023, Vol. 16, Page 816, vol. 16, no. 6, p. 816, May 2023, doi: 10.3390/PH16060816. - 2023 - в издания, индексирани в Scopus или Web of Science
11. H. N. Farrag et al., “Novel cyclic undecapeptides immobilized on reduced graphene oxide surface for enhanced antibacterial properties,” International Journal of Environmental Science and Technology 2023, pp. 1–12, Jun. 2023, doi: 10.1007/S13762-023-05035-Z. - 2023 - в издания, индексирани в Scopus или Web of Science
12. S. Sinha et al., “Nanotechnology-Based Solutions for Antibiofouling Applications: An Overview,” ACS Appl. Nano Mater., Jul. 2023, doi: 10.1021/acsanm.3c01539 - 2023 - в издания, индексирани в Scopus или Web of Science
13. S. Belo et al., “Production and Characterization of Graphene Oxide Surfaces against Uropathogens,” Coatings, vol. 13, no. 8, Art. no. 8, Aug. 2023, doi: 10.3390/coatings13081324. - 2023 - в издания, индексирани в Scopus или Web of Science
14. R. Teixeira-Santos, L. C. Gomes, R. Vieira, F. Sousa-Cardoso, O. S. G. P. Soares, and F. J. Mergulhão, “Exploring Nitrogen-Functionalized Graphene Composites for Urinary Catheter Applications,” Nanomaterials 2023, Vol. 13, Page 2604, vol. 13, no. 18, p. 2604, Sep. 2023, doi: 10.3390/NANO13182604. - 2023 - в издания, индексирани в Scopus или Web of Science
15. P. Chen et al., “Composite porphyrin-based conjugated microporous polymer/graphene oxide capable of photo-triggered combinational antibacterial therapy and wound healing,” Biomater. Adv., vol. 154, p. 213662, Nov. 2023, doi: 10.1016/j.bioadv.2023.213662. - 2023 - в издания, индексирани в Scopus или Web of Science
16. Z. Zhang et al., “Crown ether-based porous organic polymer encapsulated Ag2[Fe(CN)5NO] composite towards ultra-low dose efficient sterilization and wound healing application,” Mater. Today Chem., vol. 34, p. 101794, Dec. 2023, doi: 10.1016/j.mtchem.2023.101794. - 2023 - в издания, индексирани в Scopus или Web of Science
17. H. Wu, X. Chen, L. Kong, and P. Liu, “Mechanical and Biological Properties of Titanium and Its Alloys for Oral Implant with Preparation Techniques: A Review,” Materials, vol. 16, no. 21, Art. no. 21, Jan. 2023, doi: 10.3390/ma16216860. - 2023 - в издания, индексирани в Scopus или Web of Science
18. Levchenko et al., “Recent Progress in Marine Antifouling Technology Based on Graphene and Graphene Oxide Nanocomposite Materials,” Advanced Engineering Materials, vol. n/a, no. n/a, p. 2300541, doi: 10.1002/adem.202300541. - 2023 - в издания, индексирани в Scopus или Web of Science
19. G. E. Yılmaz, I. Göktürk, M. Ovezova, F. Yılmaz, S. Kılıç, and A. Denizli, “Antimicrobial Nanomaterials: A Review,” Hygiene, vol. 3, no. 3, Art. no. 3, Sep. 2023, doi: 10.3390/hygiene3030020. - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
20. R. Teixeira-Santos, S. Belo, R. Vieira, F. J. M. Mergulhão, and L. C. Gomes, “Graphene-Based Composites for Biomedical Applications: Surface Modification for Enhanced Antimicrobial Activity and Biocompatibility,” Biomolecules, vol. 13, no. 11, p. 1571, Oct. 2023, doi: 10.3390/BIOM13111571. - 2023 - в издания, индексирани в Scopus или Web of Science
21. D. Chatterjee and K. Sivashanmugam, “Utilization of graphene and rGO membranes for water and wastewater treatments,” Phys. Sci. Rev., Apr. 2024, doi: 10.1515/psr-2023-0046. - 2024 - в издания, индексирани в Scopus или Web of Science
22. H. N. Le, T. B. Y. Nguyen, D. T. T. Nguyen, T. B. T. Dao, T. D. Nguyen, and C. N. Ha Thuc, “Sonochemical synthesis of bioinspired graphene oxide – zinc oxide hydrogel for antibacterial painting on biodegradable polylactide film,” Nanotechnology, 2024, doi: 10.1088/1361-6528/ad40b8. - 2024 - в издания, индексирани в Scopus или Web of Science
23. Y. Li et al., “Amino-functionalized graphene oxide affects bacteria–phage interactions in aquatic environments,” Water Research, p. 121840, May 2024, doi: 10.1016/j.watres.2024.121840. - 2024 - в издания, индексирани в Scopus или Web of Science
24. L. Giraud et al., ‘Surface-anchored Carbon Nanomaterials for antimicrobial surfaces’, Nanoscale, Jul. 2024, doi: 10.1039/D4NR02810D. - 2024 - в издания, индексирани в Scopus или Web of Science
25. H. S. Budi et al., “A promising poly (e-caprolactone)/graphene-based scaffold as an antibacterial in regenerating bone tissue,” Braz. J. Biol., vol. 84, p. e279967, Aug. 2024, doi: 10.1590/1519-6984.279967. - 2024 - в издания, индексирани в Scopus или Web of Science
26. V. S. Smitha, S. Anson, D. M, T. Vimala, and T. R. Resmi, “Antifouling behavior of titania-silica-reduced graphene oxide nanocomposites as coatings for marine application,” New J. Chem., Aug. 2024, doi: 10.1039/D4NJ01823K. - 2024 - в издания, индексирани в Scopus или Web of Science
27. A. Kowalczyk, A. Kraśkiewicz, A. Markowska-Szczupak, and K. Kowalczyk, ‘Antimicrobial Coatings Based on a Photoreactive (Meth)acrylate Syrup and Ferulic Acid—The Effectiveness against Staphylococcus epidermidis’, Polymers, vol. 16, no. 17, Art. no. 17, Jan. 2024, doi: 10.3390/polym16172452. - 2024 - в издания, индексирани в Scopus или Web of Science
28. T. R. Anju, M. George, and R. M. Jose, ‘Inorganic Nanomaterial Coating to Prevent Biofouling’, in Novel Anti-Corrosion and Anti-Fouling Coatings and Thin Films, John Wiley & Sons, Ltd, 2024, pp. 77–107. doi: 10.1002/9781394234318.ch4. - 2024 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
29. V. S. Smitha, A. Swargy, M. Digilarani, T. Vimala, and T. R. Resmi, ‘Antifouling behavior of titania–silica-reduced graphene oxide nanocomposites as coatings for marine applications’, New J. Chem., Aug. 2024, doi: 10.1039/D4NJ01823K. - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus