Autors: Cholakova, I. N., Takov, T. B., Tsankov R. Ts., Simonne N.
Title: Temperature Influence on Hall Effect Sensors Characteristics
Keywords: 0.18µm CMOS technology, Hall microsensors, offset, sensitivities, temperature dependence

Abstract: — Horizontal Hall microsensors, comprising a silicon substrate and four contacts, providing two supply inputs and two differential outputs, are designed and characterized. This paper presents the temperature influence on the residual offset and also on the voltage related sensitivities. The measured voltage related sensitivity is 152 mV/VT. The sensors are tested at 125C, 85C, 50C, 25C, 0C, -20C and -40C. An offset compensation method is used in order to achieve residual offset in the micro scale (the highest achieved value offset is 6.97 µV).

References

    Issue

    20th Telecommunications forum TELFOR 2012, pp. 967-970, 2012, Serbia, DOI 978-1-4673-2984-2/12

    Full text of the publication

    Цитирания (Citation/s):
    1. Bogdanov, D., Ralchev, M., Mateev, V., Marinova, I., Harmonic spectrum filtration for current sensor measurements, 2019 16th Conference on Electrical Machines, Drives and Power Systems, ELMA 2019 - Proceedings, Article number 8771574 - 2019 - в издания, индексирани в Scopus или Web of Science
    2. M Kahr, M Stifter, H Steiner, W Hortschitz, G Kovács, Kainz, A., Schalko, J., Keplinger, F., Dual resonator MEMS magnetic field gradiometer, Sensors (Switzerland) Volume 19, Issue 3, 1 February 2019, Article number 493 - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Chen, K.-L., Huang, G.-J., Chen, N., Lee, W.-J., A new self-calibration method for electronic current transformers, Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A 41(2), pp. 77-85 - 2018 - в издания, индексирани в Scopus или Web of Science
    4. GJ Huang, N Chen, KL Chen, Self-calibration method for coreless Hall effect current transformer, 2016 IEEE Power and Energy Society General Meeting (PESGM), ISBN:978-1-5090-4168-8, Boston; United States - 2016 - в издания, индексирани в Scopus или Web of Science
    5. V Mateev, M Ralchev, I Marinova, Current Sensor Accuracy Enhancement by Harmonic Spectrum Analysis, Proceedings of the International Conference on Sensing Technology, ICST Volume 2019-December, December 2019, Article number 9047692 - 2019 - в издания, индексирани в Scopus или Web of Science
    6. Muchinapaya, A., Gaunt, C.T., Oyedokun, D.T.O., Design of a Low-Cost System to Monitor Geomagnetically Induced Currents in Transformer Neutrals, 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018 8520985, pp. 875-879 - 2018 - в издания, индексирани в Scopus или Web of Science
    7. Bhar, I., Mandal, N., An ANN Based Temperature Compensation Technique for Level Measurement Using Float and Hall Sensor, INDICON 2018 - 15th IEEE India Council International Conference December 2018, Article number 8987122 - 2018 - в издания, индексирани в Scopus или Web of Science
    8. M Lindkvist, Measuring water current speed and direction of a Long Term Underwater Sensor (LoTUS) using tilt and roll compensation, Digitala Vetenskapliga Arkivet, Student thesis, Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences. KTH Centre of Naval architecture. Series UPTEC F, ISSN 1401-5757 ; 20010 - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    9. Lee, C.-Y., Lin, Y.-Y., Kuo, C.-K., Fu, L.-M. "Design and application of mems-based hall sensor array for magnetic field mapping", Micromachines 12(3),299 - 2021 - в издания, индексирани в Scopus или Web of Science
    10. Botsch, L., Raatz, N., Pezzagna, S., Staacke, R., John, R., Abel, B., Esquinazi, P.D., Meijer, J., Diziain, S., "Vectorial calibration of superconducting magnets with a quantum magnetic sensor", Review of Scientific Instruments 91(12),0023597 - 2020 - в издания, индексирани в Scopus или Web of Science
    11. Krone, A., Alpert, H., Shetty, S., Senesky, D.G., Salamo, G., Huitink, D., "Degradation of gallium nitride-based hall-effect sensors in high temperature environments", ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK - 2020 - в издания, индексирани в Scopus или Web of Science
    12. A. Lalwani1 , A. Yalamarthy, H. Alpert, M. A. Holliday, S. Eisner, C. Chapin, D. Senesky, Hall-Effect Sensor Technique for No Induced Voltage in AC Magnetic Field Measurements Without Current Spinning, , IEEE Sensors Manuscript 9,23 (1) - 2021 - в издания, индексирани в Scopus или Web of Science
    13. R. Murugan et al., "Multiphysics System Co-Design of a High-Precision, High-Voltage (±600V) Isolated Hall-Effect Current Sensor," 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), 2021, pp. 1226-1233, doi: 10.1109/ECTC32696.2021.00200. - 2021 - в издания, индексирани в Scopus или Web of Science
    14. M. M. S., U. Tarafdar and H. S. P., "A New Auxiliary Steering Angle Sensor for Power-Steering in Four-Wheelers," 2021 IEEE 5th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), 2021, pp. 343-347, doi: 10.1109/CATCON52335.2021.9670537. - 2021 - в издания, индексирани в Scopus или Web of Science
    15. Krone, A., Kasitz, J., Huitink, D., Alpert, H., Senesky, D., Shetty, S., and Salamo, G. (February 8, 2022). "High Temperature Degradation Modes Observed in Gallium Nitride-Based Hall-Effect Sensors." ASME. J. Electron. Packag. doi: https://doi.org/10.1115/1.4053765 - 2022 - в издания, индексирани в Scopus или Web of Science

    Вид: публикация в международен форум, публикация в реферирано издание