Autors: Nikolov, D. N., Kordev I. H., Stefanova, S. A.
Title: Concept for network intrusion detection system based on recurrent neural network classifier
Keywords: DoS, high-school student, intrusion detection system, long-s

Abstract: This paper presents the effects of problem based learning project on a high-school student in Technology school 'Electronic systems' associated with Technical University Sofia. The problem is creating an intrusion detection system for Apache HTTP Server with duration 6 months. The intrusion detection system is based on a recurrent neural network classifier namely long-short term memory units.

References

    Issue

    2018 IEEE 27th International Scientific Conference Electronics, pp. 1-4, 2018, Bulgaria, IEEE, DOI 10.1109/ET.2018.8549584

    Copyright IEEE

    Цитирания (Citation/s):
    1. Georgi, T., Radoslav, Y. & Nataly, Z. 2020, "Some security issues with the industrial internet of things and comparison to SCADA systems", SPIIRAS Proceedings, vol. 19, no. 2, pp. 358-382. - 2020 - в издания, индексирани в Scopus или Web of Science
    2. Laghrissi, F.E., Douzi, S., Douzi, K. & Hssina, B. 2021, "Intrusion detection systems using long short-term memory (LSTM)", Journal of Big Data, vol. 8, no. 1. - 2021 - в издания, индексирани в Scopus или Web of Science
    3. Larriva-Novo, X.A., Vega-Barbas, M., Villagra, V.A. & Sanz Rodrigo, M. 2020, "Evaluation of Cybersecurity Data Set Characteristics for Their Applicability to Neural Networks Algorithms Detecting Cybersecurity Anomalies", IEEE Access, vol. 8, pp. 9005-9014. - 2020 - в издания, индексирани в Scopus или Web of Science
    4. Soni, M.K., Jain, A.K., Patidar, C.P., Shukla, M. & Singh, U. 2020, "Review of network intrusion detection systems", International Journal of Scientific and Technology Research, vol. 9, no. 2, pp. 3901-3905. - 2020 - в издания, индексирани в Scopus или Web of Science
    5. Thapa, K.N.K. & Duraipandian, N. 2021, "Malicious Traffic classification Using Long Short-Term Memory (LSTM) Model", Wireless Personal Communications, . - 2021 - в издания, индексирани в Scopus или Web of Science
    6. Shende S., Thorat S., 2020, Long Short-Term Memory (LSTM) Deep Learning Method for Intrusion Detection in Network Security, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 09, Issue 06 (June 2020) - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    7. Alqahtani, A.S. 2022, "FSO-LSTM IDS: hybrid optimized and ensembled deep-learning network-based intrusion detection system for smart networks", Journal of Supercomputing, . - 2022 - в издания, индексирани в Scopus или Web of Science
    8. P. Pitchandi, M. Nivaashini, and R. K. Grace, “Optimized ensemble learning models based on clustering and hybrid deep learning for wireless intrusion detection,” IETE Journal of Research, vol. 70, no. 10, pp. 7787–7807, Jun. 2024, doi: 10.1080/03772063.2024.2367042. - 2024 - в издания, индексирани в Scopus или Web of Science

    Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus