Autors: Georgieva, D. A., Stefanov, I. Z., Yazadjiev, S. S., Todorov, M. D.
Title: Born-Infeld black holes coupled to a massive scalar field
Keywords: scalar–tensor theories of gravity, nonlinear electrodynamics, black holes, stability, thermodynamics

Abstract: Born–Infeld black holes in the scalar–tensor theories of gravity with massless scalar field have been recently obtained. The aim of the current paper is to study the effect of the inclusion of a potential for the scalar field in the theory, through a combination of analytical techniques and numerical methods. The black holes coupled to a massive scalar field have richer causal structure in comparison to the massless scalar field case. In the former case, the black holes may have a second, inner horizon. The presence of potential for the scalar field allows the existence of extremal black holes for certain values of the mass of the scalar field and the magnetic (electric) charge of the black hole. The solutions are stable against spherically symmetric perturbations. Arguments in favor of the general stability of the solutions coming from the application of the “turning point” method are also presented.

References

  1. M. Born and L. Infeld, Proc. R. Soc. London A 143 (1934) 410.
  2. E. Fradkin and A. Tseytlin, Phys. Lett. B 163 (1985) 123.
  3. E. Bergshoeff, E. Sezgin, C. Pope and P. Townsend, Phys. Lett. B 188 (1987) 70.
  4. R. Metsaev, M. Rahmanov and A. Tseytlin, Phys. Lett. B 193 (1987) 207.
  5. R. Leigh, Mod. Phys. Lett. A 4 2767 (1989).
  6. A. García, H. Salazar and J. Plebañski, Nuovo Cimento Soc. Ital. Fis. B 84 (1984) 65.
  7. M. Demianski, Found. Phys. 16 (1986) 187.
  8. D. Wiltshire, Phys. Rev. D 38 (1988) 2445.
  9. H. P. Oliveira, Class. Quantum Gravity 11 (1994) 1469.
  10. G. Gibbons and D. Rasheed, Nucl. Phys. B 454 (1995) 185.
  11. G. Gibbons and D. Rasheed, Phys. Lett. B 476 (1996) 515.
  12. E. Ayon-Beato and A. Garcia, Phys. Rev. Lett. 80 (1998) 5056.
  13. T. Tamaki and T. Torii, Phys. Rev. D 62 (2000) 061501R.
  14. M. Novello, S. Perez Bergliaffa and J. Salim, Class. Quantum Gravity 17 (2000) 3821.
  15. K. Bronnikov, Phys. Rev. D 63 (2001) 044005.
  16. G. Gibbons and C. Herdeiro, Class. Quantum Gravity 18 (2001) 1677.
  17. H. Yajima and T. Tamaki, Phys. Rev. D 63 (2001) 064007.
  18. M. Gurses and O. Sarioglu, Class. Quantum Gravity 20 (2003) 351.
  19. A. Burinskii and S. R. Hildebrandt, Phys. Rev. D 65 (2002) 104017.
  20. S. Fernando and D. Krug, Gen. Relativ. Gravit. 35 (2002) 129.
  21. T. K. Dey, Phys. Lett. B 595 (2004) 484.
  22. I. Stefanov, S. Yazadjiev and M. Todorov, Mod. Phys. Lett. A 22(17) (2007) 1217.
  23. D. Rasheed, arXiv:hep-th/9702087.
  24. N. Breton, arXiv:gr-qc/0109022.
  25. N. Breton, arXiv:hep-th/0702008.
  26. R. Cai, D. Pang and A.Wang, Phys. Rev. D 70 (2004) 124034, arXiv:hep-th/0410158.
  27. T. Tamaki, J. Cosmol. Astropart. Phys. 0405 (2004) 004.
  28. G. Clement and D. Gal’tsov, Phys. Rev. D 62 (2000) 124013.
  29. T. Tamaki and T. Torii, Phys. Rev. D 64 (2001) 024027.
  30. S. Yazadjiev, Phys. Rev. D 72 (2005) 044006.
  31. A. Sheykhi, N. Riazi and M. H. Mahzoon, Phys. Rev. D 74 (2006) 044025.
  32. A. Sheykhi and N. Riazi, Phys. Rev. D 75 (2007) 024021.
  33. T. W. Chemissany, Mees de Roo and S. Panda, Class. Quantum Gravity 25 (2008) 225009.
  34. A. Sheykhi, Phys. Lett. B 662 (2008) 7.
  35. A. Sheykhi, arXiv:0801.4112.
  36. R. Gregory and J. A. Harvey, Phys. Rev. D 47 (1993) 2411.
  37. J. Horne and G. Horowitz, Nucl. Phys. B 399 (1993) 169.
  38. T. Tamaki, Phys. Rev. D 66 (2002) 104021.
  39. S. Yazadjiev, P. Fiziev, T. Boyadjiev and M. Todorov, Mod. Phys. Lett. A 16 (2001) 2143.
  40. I. Stefanov, S. Yazadjiev and M. Todorov, Phys. Rev. D 75 084036 (2007).
  41. I. Stefanov, S. Yazadjiev and M. Todorov, Mod. Phys. Lett. A 23(34) (2008) 2915, arXiv:0708.4141.
  42. I. Stefanov, S. Yazadjiev and M. Todorov, Class. Quantum Gravity 26 (2009) 015006.
  43. N. Banerjee and S. Sen, Phys. Rev. D 47 (1998) 104024.
  44. Th. Sotiriou, V. Faraoni and St. Liberati, Int. J. Mod. Phys. D 17 (2008) 399.
  45. V. Faraoni and Sh. Nadeau, Phys. Rev. D 75 (2007) 023501.
  46. Th. Helbig, Astrophys. J. 382 (1991) 223.
  47. C. M. Will, Living Rev. Relativ. 9 (2006) 3, arXiv:gr-qc/0103036.
  48. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1990) (in Russian) (English translation: Dover Publications, New York, 1990).
  49. M. K. Gavurin, Izvestia VUZ, Matematika 14(6) (1958) 18–31 (in Russian) [see also Math. Rev. 25(2) (1963) 1380].
  50. E. P. Jidkov, G. I. Makarenko and I. V. Puzynin, in Physics of Elementary Particles and Atomic Nuclei ((Joint Institute for Nuclear Research (JINR)), Dubna, 1973), Vol. 4, Part I, pp. 127–166 (in Russian), English translation: American Institute of Physics, p. 53.
  51. J. Katz, Mon. Not. R. Astron. Soc. 183 (1978) 765.
  52. R. Sorkin, Astrophys. J. 249 (1981) 254.
  53. R. D. Sorkin, Astrophys. J. 257 (1982) 847.
  54. G. Arcioni and E. Lozano-Tellechea, Phys. Rev. D 72 (2005) 104021.
  55. J. Katz, Mon. Not. R. Astron. Soc. 189 (1979) 817.
  56. O. J. Kwon, Y. D. Kim, Y. S. Myung, B. H. Cho and Y. J. Park, Phys. Rev. D 34 (1986) 333.
  57. T. Torii, T. Tamaki and K. Maeda, Phys. Rev. D 68 (2003) 024028.

Issue

International Journal of Modern Physics D 20(13), vol. 20, issue 13, pp. 2471-2496, 2011, Singapore, World Scientific Publishing Company, https://doi.org/10.1142/S0218271811020469

Copyright World Scientific Publishing Company

Full text of the publication

Цитирания (Citation/s):
1. Alireza Allahyari, Mohsen Khodadi, Sunny Vagnozzi, and David F. Mota, "Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope," JCAP 02 (2020) 003, https://doi.org/10.1088/1475-7516/2020/02/003 - 2020 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Web of Science