Autors: Yatchev, I. S., Sen, M. M., Balabozov, I. S., Kostov, I. G.
Title: Modelling of a Hall effect-based current sensor with an open core magnetic concentrator
Keywords: 3D FEM; Current sensors; Hall effect; Magnetic concentrator

References

    Issue

    Sensors (Switzerland), vol. 18, issue 4, 2018, Switzerland, DOI: 10.3390/s18041260

    Цитирания (Citation/s):
    1. Karsenty, A. A comprehensive review of integrated hall effects in macro-, micro-, nanoscales, and quantum devices(2020) Sensors (Switzerland), 20 (15), art. no. 4163, pp. 1-33. DOI: 10.3390/s20154163 - 2020 - в издания, индексирани в Scopus или Web of Science
    2. Lee, S., Hong, S., Park, W., Kim, W., Lee, J., Shin, K., Kim, CG. & Lee, D. 2018, "High Accuracy Open-Type Current Sensor with a Differential Planar Hall Resistive Sensor", Sensors, vol. 18, no. 7., DOI: 10.3390/s18072231 - 2018 - в издания, индексирани в Scopus или Web of Science
    3. Gambhir, A., Newaskar, A. & Desai, T. 2019, "Challenges in High Current Measurements Using Magnetic Flux Concentrator and Hall Effect Current Sensor", SAE Technical Papers, vol. 2019-January, no. January - 2019 - в издания, индексирани в Scopus или Web of Science
    4. Sulowicz, M., Ludwinek, K., Tulicki, J., Depczynski, W., Nowakowski, L., “Practical Adaptation of a Low-Cost Voltage Transducer with an Open Feedback Loop for Precise Measurement of Distorted Voltages”, Sensors, vol. 19, DOI:10.3390/s19051071 - 2019 - в издания, индексирани в Scopus или Web of Science
    5. Lee, C.-Y., Lin, Y.-Y., Kuo, C.-K., Fu, L.-M. Design and application of mems-based hall sensor array for magnetic field mapping. Micromachines, 12 (3), art. no. 299, 11 p., DOI: 10.3390/mi12030299 - 2021 - в издания, индексирани в Scopus или Web of Science
    6. Mușuroi, C., Oproiu, M., Volmer, M., Neamtu, J., Avram, M., Helerea, E. Low field optimization of a non-contacting high-sensitivity gmr-based dc/ac current sensor. Sensors, 21 (7), art. no. 2564, DOI: 10.3390/s21072564. - 2021 - в издания, индексирани в Scopus или Web of Science
    7. Didi, Z., El Azami, I. IoT Design and Realization of a Supervision Device for Photovoltaic Panels Using an Approach Based on Radiofrequency Technology. (Lecture Notes in Networks and Systems, 211 LNNS, pp. 365-375, DOI: 10.1007/978-3-030-73882-2_34 - 2021 - в издания, индексирани в Scopus или Web of Science
    8. Lim, B., Mahfoud, M., Das, P.T., Jeon, T., Jeon, C., Kim, M., Nguyen, T.-K., Tran, Q.-H., Terki, F., Kim, C. Advances and key technologies in magnetoresistive sensors with high thermal stabilities and low field detectivities (2022) APL Materials, 10 (5), art. no. 051108, DOI: 10.1063/5.0087311 - 2022 - в издания, индексирани в Scopus или Web of Science
    9. Didi, Z., El Azami, I. “Monitoring system of photovoltaic panels using 433 MHz radio frequency module” (2022) Indonesian Journal of Electrical Engineering and Computer Science, 28 (1), pp. 115-123. DOI: 10.11591/ijeecs.v28.i1.pp115-123 - 2022 - в издания, индексирани в Scopus или Web of Science
    10. Didi, Z., Azam, I.E. “Monitoring Photovoltaic Panels Using the ESP32 Microcontroller via low-power Bluetooth Communication” (2022) International Conference on Intelligent Systems and Computer Vision, ISCV 2022, DOI: 10.1109/ISCV54655.2022.9806084 - 2022 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science