Autors: Dimitrov, S. I. Title: On the number of pairs of positive integers x, y < H such that x^2+y^2+1, x^2+y^2+2 are square-free Keywords: Square-free numbers, Asymptotic formula, Gauss sums Abstract: In the present paper we show that there exist infinitely many consecutive square-free numbers of the form x^2+y^2+1, x^2+y^2+2. We also establish an asymptotic formula for the number of pairs of positive integers x, y < H such that x^2+y^2+1, x^2+y^2+2 are square-free. References Issue
Copyright Acta Arithmetica Full text of the publication |
Цитирания (Citation/s):
1. M. Jing, H. Liu, Consecutive square-free numbers and square-free primitive roots, Int. J. Number Theory (ISSN : 1793-0421 (print), 1793-7310 (online)), vol. 18, (2022), 205 -- 226, (https://doi.org/10.1142/S1793042122500154). - 2022 - в издания, индексирани в Scopus или Web of Science
2. G. Zhou, Y. Ding, On the square-free values of the polynomial x^2+y^2+z^2+k, J. Number Theory (ISSN : 0022314X (print), ISSN : 10961658 (online)), vol. 236, (2022), 308 -- 322, (https://doi.org/10.1016/j.jnt.2021.07.022). - 2022 - в издания, индексирани в Scopus или Web of Science
3. B. Chen, On the consecutive square-free values of the polynomials x_1^2+...+x_k^2+1, x_1^2+...x_k^2+2, Indian J. Pure Appl. Math., (ISSN : 0019-5588 (print), 0975-7465 (online)), vol 54, 3, (2023), 743 -- 756, (https://doi.org/10.1007/s13226-022-00292-z). - 2023 - в издания, индексирани в Scopus или Web of Science
4. Y. Feng, Consecutive square-free values of the type x^2+y^2+z^2+k, x^2+y^2+z^2+k+1, Czechoslovak Math. J. (ISSN : 0011-4642 (print), ISSN : 1572-9141 (online)), vol. 73, 1, (2023), 297 -- 310, (https://doi.org/10.21136/CMJ.2022.0154-22). - 2023 - в издания, индексирани в Scopus или Web of Science
5. G. Chen, W. Wang, On the r-free values of the polynomial x^2+y^2+z^2+k, Czechoslovak Math. J., (ISSN : 0011-4642 (print), ISSN : 1572-9141 (online)), vol. 73, 3, (2023), 955 -- 969, (https://doi.org/10.21136/CMJ.2023.0394-22). - 2023 - в издания, индексирани в Scopus или Web of Science
6. L. Vaishya, M. Pandey, Counting square-free integers represented by binary quadratic forms of a fixed discriminant, Arch. Math., (ISSN: 0003-889X (print), ISSN: 1420-8938 (online)), vol. 121, 4, (2023), 385 -- 395, (https://doi.org/10.1007/s00013-023-01915-5). - 2023 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор