Autors: Mitov, A. S., Kralev, J. K., Slavov, T. N., Angelov, I. I.
Title: Comparison of Model Predictive Control (MPC) and Linear-Quadratic Gaussian (LQG) Algorithm for Electrohydraulic Steering Control System
Keywords: model predictive control, linear-quadratic Gaussian, electro

Abstract: The paper compares the performance of two embedded controllers applied in electrohydraulic steering systems – model predictive controller (MPC) and linear-quadratic Gaussian (LQG) controller with Kalman filtering for state estimation. Both controllers are designed on the basis of single input multiple output “black box” model obtained via identification approach. The controllers are implemented into industrial logic controller for mobile applications and their workability is experimentally checked with a laboratory model of a steering system for non-road mobile machinery. The results corresponding to investigation of performance of the closed-loop system are presented.

References

    Issue

    25th Scientific Conference on Power Engineering and Power Machines, PEPM 2020; Sozopol; Bulgaria,E3S Web of Conferences, vol. 207, pp. 1-10, 2020, Bulgaria, EDP Sciences, DOI: 10.1051/e3sconf/202020704001

    Copyright EDP Sciences

    Цитирания (Citation/s):
    1. Raghavendra, D.R. Control of SISO EH Servo Systems, Springer Tracts in Mechanical Engineering, pp. 111 - 171 - 2023 - в издания, индексирани в Scopus или Web of Science
    2. Yamada, T., Inada, R., Ito, K. Designing a Model Predictive Controller for Displacement Control of Axial Piston Pump, International Journal of Automation Technology, 18(1), pp.113-127 - 2024 - в издания, индексирани в Scopus или Web of Science
    3. Emhemed A.A.A., Mamat R.B., Rahman H.A., Mohammed D.S.S., Robustness Analysis of A Class of MPC Tuning Strategy, (2024) 2024 IEEE 4th International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2024 - Proceeding, pp. 220 - 226 - 2024 - в издания, индексирани в Scopus или Web of Science

    Вид: публикация в национален форум с межд. уч., публикация в реферирано издание, индексирана в Scopus