Autors: Kralov, I. M., Nedelchev, K. I.
Keywords: Acoustic energy harvesting, active noise control, passive transport noise barriers

Abstract: Reflected traffic noise from acoustic barriers usually leads to increasing of the noise level before the barrier due to combined effect of source and reflected noise. This could affect a lot of people – drivers and passengers. Some times their number is many times bigger than the number of affected people behind the barrier. One of the existed solutions is use of expensive combined noise barriers of high degree of absorption. In this study, a new passive transport noise barrier having high level of reduction of the reflected noise is treated. Noise reduction efficiency is done by appropriate design of the barrier profile performing source and reflected acoustic waves interference in small volumes near the barrier. In addition, these volumes of intensive acoustic waves interference near the barrier have frequency bands of high acoustic energy levels and are suitable for energy harvesters’ usage. Through numerical simulation and experimental validation, an analyses of the acoustic energ


  1. Nikolov, N., D. Benov, I. Shubin, Acoustic Design of Transport Noise Insulating Barriers, (Sofia: АСМО Academic Press (in Bulgarian)) p. 241, 2014
  2. Patent № UD 96/16230 – 30.05.1996
  3. Patent № US № 6305492 B1 / 23.10.2001
  4. Patent № US 7789193 B2 / 07.09.2010
  5. Patent № АТ 513615 А4 2014-06-15
  6. Patent № 89203035.4 / 29.11.1989
  7. Patent № DE 42 20 547 А1 / 07.01.1993
  8. Patent № 10 2014 2017 767.7 / 10.03.2016
  9. Kralov I., S. Terzieva, I. Ignatov, Analysis of methods and MEMS for acoustic energy harvesting with application in railway noise reduction. Bucharest. Proc. MECAHITECH’11, Vol. 3, pp. 56-62, 2011
  10. Trevor, J., D’Antonio, P., 2009, Acoustic Absorbers and Diffusers (Taylor & Francis);
  11. Thompson, D. J., 2009, Railway Noise and Vibration (Elsevier)
  12. Gieva E, Ruskova I, Nedelchev K and Kralov I 2018 An investigation of the influence of the geometrical parameters of a passive traffic noise barrier upon the noise reduction response, AIP Conf. Proc. 2048 020020
  13. Ivanova, Y., V. Vassilev, P. Djondjorov, S. Djoumaliisky, Experimental-Theoretical approach to the identification of effective sound attenuation panels from recycled materials, J. Bul. Chem. Comm. 42 1–8, 2015
  14. Aleksandrova, M., Spray deposition of piezoelectric polymer on plastic substrate for vibrational harvesting and force sensing applications AIMS Mat. Sci. 5(6) 1214-22, 2018
  15. Kralov, I., K. Nedelchev, Lowering the Noise Level in the Transport Flows Through Reduction of the Traffic Barrier Reflected Noise, IOP Conf. Ser.: Mater. Sci. Eng.618 012051, doi:10.1088/1757-899X/618/1/012051, 2019
  16. Kralov, I., New solution for transport and industrial noise protection through reflective noise barriers, BulTrans-2017, Sozopol, Matec, Vol 133, DOI:, 2017
  17. M. Yuan, Z. Cao, J. Luo, X. Chou, Recent Developments of Acoustic Energy Harvesting: A Review, Micromachines 2019, 10, 48; doi:10.3390/mi10010048
  18. H. Noh, Acoustic energy harvesting using piezoelectric generator for railway environmental noise, Advances in Mechanical Engineering 2018, Vol. 10(7) 1–9 The Author(s) 2018DOI: 10.1177/1687814018785058
  19. Y. Wang, X. Zhu, T. Zhang, S. Bano, H. Pan, L. Qi, Z. Zhang, Y. Yuan, A Renewable Low-frequency Acoustic Energy Harvesting Noise Barrier for High-speed Railways Using a Helmholtz Resonator and a PVDF Film, Applied Energy, Vol. 230, 2018, Pp. 52-61,
  20. N. Cui, X. Jia, A. Lin, J. Liu, S. Bai, L. Zhang, Y. Qin, R. Yang, F. Zhouc, Y. Li, Piezoelectric nanofiber/polymer composite membrane for noise harvesting and active acoustic wave detection, Nanoscale Adv., 2019,1, 4909-4914,
  21. F. Khan, I. Syed, Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion, Review of Scientific Instruments 87, 025003 (2016);
  22. Jin, M., Liang, B., Yang, J. et al. Ultrathin Planar Metasurface-based Acoustic Energy Harvester with Deep Subwavelength Thickness and Mechanical Rigidity. Sci Rep 9, 11152 (2019).
  23. Wu Shao-Hua, Du Li-Dong, Kong De-Yi et al . Hybrid device for acoustic noise reduction and energy harvesting based on a silicon micro-perforated panel structure[J]. Chin. Phys. B, 2014, 23(4):044302
  24. R. Monthéard, S. Carbonne, M. Bafleur, V. Boitier, J. Dilhac, et al., Proof of concept of energy harvesting from aero acoustic noise. 12th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2012), Dec 2012, Atlanta, United States. pp. 267-270
  25. Hu, Shan. (2014). Carbon nanotube thin films for active noise cancellation, solar energy harvesting, and energy storage in building windows. Retrieved from the University of Minnesota Digital Conservancy,
  26. Farghaly YA, Hemeida FAA, Salah S, Noise utilization as an approach for reducing energy consumption in street lighting. PLoS ONE 14(7): e0219373., (2019)
  27. Monthéard, R., Bafleur, M., Boitier, V., Dollat, X., Nolhier, N., Piot, E., Airiau, C., Dilhac, J., Coupling supercapacitors and aeroacoustic energy harvesting for autonomous wireless sensing in aeronautics applications. (2016) Energy Harvesting and Systems, vol. 3 (№ 4). pp. 1-12. ISSN 2329-8774
  28. Gieva, E., I. Ruskova, "Models in COMSOL of Attenuation of Sonic Crystal Noise Barrier depend on Different Form," 2020 XXIX International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 2020, pp. 1-4, doi: 10.1109/ET50336.2020.9238232
  29. E. E. Gieva and I. N. Ruskova, "COMSOL Modeling of Geometrical Impact of Sonic Crystal Noise Barrier Attenuation," 2020 XI National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria, 2020, pp. 1-4, doi: 10.1109/ELECTRONICA50406.2020.9305136
  30. Valkov, G., V. Nikolov, Analysis of stresses and deformations in the chassis of rough terrain forklifts, 2020, IOP Conf. Ser.: Mater. Sci. Eng., 878, 012038
  31. Fomichev, V.V., Il’in, A.V., Rogovskii, A.I. et al. Search for Periodic Regimes in an Energy-Harvester Model by Simulation. Comput Math Model 31, 293–307 (2020).


Journal Environmental Protection and Ecology (JEPE), vol. 22, issue 6, pp. 2318-2329, 2021, Bulgaria, ISSN 13115065

Цитирания (Citation/s):
1. Vinu Prakash K.C., Yogeswari K.р STUDY OF NOISE POLLUTION WITH ASSOCIATED RISK ON WORKERS AT THE CONSTRUCTION SITE, Journal of Environmental Protection and Ecology, 23(5), pp. 1854-1863. - 2022 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science