Autors: Nikolova, D. V., Petkova, P. T., Manolova, A. H., Georgieva P.
Title: ECG-based Emotion Recognition: Overview of Methods and Applications
Keywords: ECG-based Emotion Recognition

Abstract: This paper presents an overview of recent methods for recognition of human emotions based on Electrocardiogram (ECG) signals and related applications. The major challenges in emotion modeling (affective computing) from ECG data are finding representations that are invariant to inter- and intra-subject differences, as well as the inherent noise associated with the ECG data recordings. The most common invariant features (in frequency and time domain) extracted from the raw ECG signals are outlined. The reviewed studies reveal the great potential of ECG to decode basic human emotional states such as joy, sadness, anger, fear in combination with other physiological signals and facial expression. Major application areas cover patient monitoring, marketing, car driving.

References

    Issue

    ANNA'18; Advances in Neural Networks and Applications, pp. 1-5, 2018, Bulgaria, IEEE, ISBN 978-3-8007-4756-6

    Copyright IEEE

    Цитирания (Citation/s):
    1. Dzedzickis, A., Kaklauskas, A., & Bucinskas, V. (2020). Human emotion recognition: Review of sensors and methods. Sensors, 20(3), 592. - 2020 - в издания, индексирани в Scopus или Web of Science
    2. Davila-Montero, S., Dana-Le, J. A., Bente, G., Hall, A. T., & Mason, A. J. (2021). Review and Challenges of Technologies for Real-time Human Behavior Monitoring. IEEE Transactions on Biomedical Circuits and Systems. - 2021 - в издания, индексирани в Scopus или Web of Science
    3. Han, L., Lu, L., Dong, H., Xie, S., Yu, G., Shen, T., ... & Pei, X. (2021, April). Feature Extraction Method of EEG Signal Based on Synchroextracting Transform. In International Conference on Multimedia Technology and Enhanced Learning (pp. 462-468). Springer, Cham. - 2021 - в издания, индексирани в Scopus или Web of Science
    4. Park, S., Lee, S. W., & Whang, M. (2021). The Analysis of Emotion Authenticity Based on Facial Micromovements. Sensors, 21(13), 4616. - 2021 - в издания, индексирани в Scopus или Web of Science
    5. Hasnul, M. A., Alelyani, S., & Mohana, M. (2021). Electrocardiogram-Based Emotion Recognition Systems and Their Applications in Healthcare—A Review. Sensors, 21(15), 5015. - 2021 - в издания, индексирани в Scopus или Web of Science
    6. Davila-Montero, S., Dana-Le, J. A., Bente, G., Hall, A. T., & Mason, A. J. (2021). Review and Challenges of Technologies for Real-time Human Behavior Monitoring. IEEE Transactions on Biomedical Circuits and Systems. - 2021 - в издания, индексирани в Scopus или Web of Science
    7. Hamza, S., & Ayed, Y. B. (2022). Toward improving person identification using the ElectroCardioGram (ECG) signal based on non-fiducial features. Multimedia Tools and Applications, 81(13), 18543-18561. - 2022 - в издания, индексирани в Scopus или Web of Science
    8. Ohkura, M., Laohakangvalvit, T., Sripian, P., Sugaya, M., Chiba, H., & Berque, D. (2022). Affective evaluation of virtual kawaii robotic gadgets using biological signals in a remote collaboration of American and Japanese students. In International Conference on Human-Computer Interaction (pp. 478-488). Springer, Cham. - 2022 - в издания, индексирани в Scopus или Web of Science
    9. Wierciński, T., Rock, M., Zwierzycki, R., Zawadzka, T., & Zawadzki, M. (2022). Emotion Recognition from Physiological Channels Using Graph Neural Network. Sensors, 22(8), 2980. - 2022 - в издания, индексирани в Scopus или Web of Science
    10. Hamza, S., & Ayed, Y. B. (2022). Toward improving person identification using the ElectroCardioGram (ECG) signal based on non-fiducial features. Multimedia Tools and Applications, 81(13), 18543-18561. - 2022 - в издания, индексирани в Scopus или Web of Science
    11. Li, R., Yuizono, T., & Li, X. (2022). Affective computing of multi-type urban public spaces to analyze emotional quality using ensemble learning-based classification of multi-sensor data. PloS one, 17(6), e0269176. - 2022 - в издания, индексирани в Scopus или Web of Science

    Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus