Autors: Karampelas, P., Vita, V., Pavlatos, C., Mladenov, V. M., Ekonomou, L. Title: Design of artificial neural network models for the prediction of the Hellenic energy consumption Keywords: Artificial neural networks , energy consumption , installed References Issue
|
Цитирания (Citation/s):
1. Pappas, S.S. Adaptive Forecasting Techniques Applied to Short Time Wind Speed Forecasting., Proceedings - 2019 3rd International Conference on Control, Artificial Intelligence, Robotics and Optimization, ICCAIRO 2019 May 2019, Article number 9057178, DOI: 10.1109/ICCAIRO47923.2019.00027 , pp. 121-128 - 2019 - в издания, индексирани в Scopus или Web of Science
2. Pappas, S. Application and comparison of adaptive methods for the long term prediction of the electrical energy consumption in Greece., 2018 10th Electrical Engineering Faculty Conference, BulEF 201820 February 2019, Article number 8646947 Santa Marina Holiday VillageSozopol; Bulgaria; DOI: 10.1109/BULEF.2018.8646947 - 2019 - в издания, индексирани в Scopus или Web of Science
3. Musbah H.,Aly H.H.,Little T.A., Energy management of hybrid energy system sources based on machine learning classification algorithms, Electric Power Systems ResearchVolume 199October 2021 Article number 107436, DOI 10.1016/j.epsr.2021.107436 - 2021 - в издания, индексирани в Scopus или Web of Science
4. Lopez-martin M.a,Sanchez-esguevillas A.a,Hernandez-callejo L.b,Arribas J.I.a, c,Carro B, Additive ensemble neural network with constrained weighted quantile loss for probabilistic electric‐load forecasting, SensorsOpen AccessVolume 21, Issue 91 May 2021 Article number 2979, DOI 10.3390/s21092979 - 2021 - в издания, индексирани в Scopus или Web of Science
5. Memarzadeh G.,Keynia F. Short-term electricity load and price forecasting by a new optimal LSTM-NN based prediction algorithm, Electric Power Systems ResearchVolume 192March 2021 Article number 106995, DOI 10.1016/j.epsr.2020.106995 - 2021 - в издания, индексирани в Scopus или Web of Science
6. Akhand, Kawsar. "Crop Yield Prediction Using Satellite Remote Sensing and Artificial Neural Network." PhD diss., The City College of New York, 2019. - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
7. Stratigakos, Akylas, Athanasios Bachoumis, Vasiliki Vita, and Elias Zafiropoulos. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks." Energies 14, no. 14 (2021): 4107. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
8. Lopez-Martin, Manuel, Antonio Sanchez-Esguevillas, Luis Hernandez-Callejo, Juan Ignacio Arribas, and Belen Carro. "Additive Ensemble Neural Network with Constrained Weighted Quantile Loss for Probabilistic Electric-Load Forecasting." Sensors 21, no. 9 (2021): 2979. - 2021 - в издания, индексирани в Scopus или Web of Science
9. Hirose, Kei, Keigo Wada, Maiya Hori, and Rin-ichiro Taniguchi. "Event Effects Estimation on Electricity Demand Forecasting." Energies 13, no. 21 (2020): 5839. - 2020 - в издания, индексирани в Scopus или Web of Science
10. Burukanli, M., 2020. Copula fonksiyonlarını kullanarak bilgisayar ağlarında saldırı tespiti (Master's thesis, Lisansüstü Eğitim Enstitüsü). - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
11. Lee, C.Y., Huang, K.Y., Chen, C.C., Zhuo, G.L. and Tuegeh, M., 2022. Electricity Management Policy Applying Data Science and Machine Learning Techniques to Improve Electricity Costs. Symmetry, vol. 14, issue (10), pp. 1-16, https://doi.org/10.3390/sym14102104, (Scopus, Google Scholar) - 2022 - в издания, индексирани в Scopus или Web of Science
12. Li, D., Tan, Y., Zhang, Y., Miao, S. and He, S., 2023. Probabilistic forecasting method for mid-term hourly load time series based on an improved temporal fusion transformer model. International Journal of Electrical Power & Energy Systems, 146, p.108743. ISSN 01420615, DOI 10.1016/j.ijepes.2022.108743 (Web of Science, Scopus, Google Scholar) SJR 1.544, IF 5.416 - 2023 - в издания, индексирани в Scopus или Web of Science
13. Taha, A., Barakat, B., Taha, M.M., Shawky, M.A., Lai, C.S., Hussain, S., Abideen, M.Z. and Abbasi, Q.H., 2023. A Comparative Study of Single and Multi-Stage Forecasting Algorithms for the Prediction of Electricity Consumption Using a UK-National Health Service (NHS) Hospital Dataset. Future Internet, vol. 15, issue (4), pp. 1 – 17, https://doi.org/10.3390/fi15040134 (Scopus, Google Scholar) - 2023 - в издания, индексирани в Scopus или Web of Science
14. Musbah, H., 2023. Stationarity Analysis and Supervised Machine Learning Techniques for Energy Management Forecasting (Doctoral dissertation), pp. 1 – 112, http://hdl.handle.net/10222/82559 (Google Scholar) - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
15. Liu, F., Dong, T., Liu, Q., Liu, Y. and Li, S., 2024. Combining fuzzy clustering and improved long short-term memory neural networks for short-term load forecasting. Electric Power Systems Research, vol. 226, p.109967. ISSN 03787796, DOI 10.1016/j.epsr.2023.109967 (Web of Science, Scopus, Google Scholar) IF 3.9, SJR 1.099 - 2024 - в издания, индексирани в Scopus или Web of Science
16. Pijarski, P. and Belowski, A., 2024. Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue. Energies, vol. 17, issue (2), pp. 1-42, ISSN 19961073, DOI 10.3390/en17020516 (Web of Science, Scopus, Google Scholar) IF 3.3, SJR 0.632 - 2024 - в издания, индексирани в Scopus или Web of Science
17. Tchórzewski, J. and Rosochacki, S., 2023. “Selection of the programming environment for neural modelling of the power and electricity demand generation systems in terms of unmanned factories,” Studia Informatica. System and information technology, vol. 29, issue (2), pp.95-106. DOI: https://doi.org/10.34739/si.2023.29.07 (Google Scholar) - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
18. Cao, Z., Wang, J., & Xia, Y. (2024). “Combined electricity load-forecasting system based on weighted fuzzy time series and deep neural networks,” Engineering Applications of Artificial Intelligence, vol. 132, pp. 1-20, ISSN 09521976, DOI 10.1016/j.engappai.2024.108375 (Web of Science, Scopus, Google Scholar) IF 1.81, SJR 1.749 - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: постер/презентация в международен форум, публикация в реферирано издание, индексирана в Scopus