Autors: La Maire, Bert F. J., Mladenov, V. M. Title: Comparison of neural networks for solving the travelling salesman problem Keywords: Integer Programming , Hopfield Neural Network , Kohonen Self References Issue
|
Цитирания (Citation/s):
1. Huang, T., Ma, Y., Zhou, Y., Huang, H., Chen, D., Gong, Z., Liu, Y. A Review of combinatorial optimization with graph neural networks., Proceedings - 2019 5th International Conference on Big Data and Information Analytics, BigDIA 2019July 2019, Article number 8802843, , 5th Kunming; China; DOI: 10.1109/BigDIA.2019.8802843 , pp. 72-77 - 2019 - в издания, индексирани в Scopus или Web of Science
2. Woo, S., Yeon, J., Ji, M., Moon, I.-C., Park, J. Deep Reinforcement Learning with Fully Convolutional Neural Network to Solve an Earthwork Scheduling Problem., Proceedings - IEEE International Conference on Systems, Man, and Cybernetics, SMC 201816 January 2019, Japan, Article number 8616714, DOI 10.1109/SMC.2018.00717 , Pages 4236-4242 - 2019 - в издания, индексирани в Scopus или Web of Science
3. • Nammouchi, A., Ghazzai, H., Massoud, Y. A Generative Graph Method to Solve the Travelling Salesman Problem., Midwest Symposium on Circuits and Systems, 2020-August,9184505, pp. 89-92, Volume 2020-August, August 2020, Article number 9184505, Pages 89-926, 3rd IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2020; Springfield; United States; 9 August 2020 through 12 August 2020; Category numberCFP20MID-ART; Code 162801, DOI: 10.1109/MWSCAS48704.2020.9184505 - 2020 - в издания, индексирани в Scopus или Web of Science
4. • Shao, W., Chan, J., Salim, F.D. Approximating Optimisation Solutions for the Travelling Officer Problem with Neural Networks., Proceedings of the International Joint Conference on Neural Networks, Proceedings of the International Joint Conference on Neural NetworksJuly 2020, Article number 92070412020, IJCNN 2020; Virtual, Glasgow; United Kingdom; 19 July, IEEE, DOI: 10.1109/IJCNN48605.2020.9207041 - 2020 - в издания, индексирани в Scopus или Web of Science
5. Larsen, Eric, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien, and Andrea Lodi. "Predicting solution summaries to integer linear programs under imperfect information with machine learning." arXiv preprint arXiv:1807.11876 (2018). - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
6. Bakshi, Soovadeep, Tianheng Feng, Zeyu Yan, and Dongmei Chen. "Fast scheduling of autonomous mobile robots under task space constraints with priorities." Journal of Dynamic Systems, Measurement, and Control 141, no. 7 (2019). - 2019 - в издания, индексирани в Scopus или Web of Science
7. da Costa, Paulo R. de O., Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. "Learning 2-opt heuristics for the traveling salesman problem via deep reinforcement learning." arXiv preprint arXiv:2004.01608 (2020). - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
8. Meeus, Hans, Jakob Fiszer, G. Van De Velde, Björn Verrelst, Dirk Lefeber, Patrick Guillaume, and Wim Desmet. "Dynamic Performance of an Oil Starved Squeeze Film Damper Combined With a Cylindrical Roller Bearing." Journal of engineering for gas turbines and power 141, no. 7 (2019). - 2019 - в издания, индексирани в Scopus или Web of Science
9. Çal, Murat, and Ali Ekici. "Solving a modified TSP problem by a greedy heuristic for cost minimization." International Journal of Modeling and Optimization 8, no. 3 (2018): 138-144. - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
10. Gsellmann, Peter, Martin Melik-Merkumians, Milan Hurban, and Georg Schitter. "Heuristic Path Planning Approach for a Granular-fill Insulation Distributing Robot." IFAC-PapersOnLine 53, no. 2 (2020): 9956-9961. - 2020 - в издания, индексирани в Scopus или Web of Science
11. Bakshi, Soovadeep. "On-demand planning of a school of autonomous mobile robots for prioritized task completion." PhD diss., 2020. - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
12. Dawson-Elli, Neal, Kishalay Mitra, and Venkat R. Subramanian. "What Can Electrochemistry Learn from Chess?." In ECS Meeting Abstracts, no. 15, p. 2188. IOP Publishing, 2018. - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
13. Dawson-Elli, Neal, Suryanarayana Kolluri, and Venkat R. Subramanian. "What Can Electrochemistry Learn from Chess? Using Data Science to Speed up Optimization of Electrochemical Models." In ECS Meeting Abstracts, no. 25, p. 860. IOP Publishing, 2018. - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
14. Holst, Gustav. "Route Planning of Transfer Buses Using Reinforcement Learning." (2020). - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
15. Aydoğan, Tuncay. "GA, AS, ACS VE MMAS ALGORİTMALARI PERFORMANSLARININ GEZGİN SATICI PROBLEMİ ÇÖZÜMÜ ÜZERİNDE DEĞERLENDİRİLMESİ." Uluslararası Teknolojik Bilimler Dergisi 9, no. 2 (2019): 50-60. - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
16. Huerta Vargas, Isaías Ignacio. "Selección automática de algoritmo a lo largo del tiempo para el problema del vendedor viajero." (2020). - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
17. Huerta, Isaías I., Daniel A. Neira, Daniel A. Ortega, Vicente Varas, Julio Godoy, and Roberto Asín-Achá. "Improving the state-of-the-art in the Traveling Salesman Problem: An Anytime Automatic Algorithm Selection." Expert Systems with Applications 187 (2022): 115948. - 2022 - в издания, индексирани в Scopus или Web of Science
18. 6. OMAR, A.H. and NAIM, A.A., 2021. NEW CROSSOVER VIA HYBRID ANT COLONY SYSTEM WITH GENETIC ALGORITHM AND MAKING STUDY OF DIFFERENT CROSSOVER FOR TSP. Journal of Theoretical and Applied Information Technology, 99(20) - 2021 - в издания, индексирани в Scopus или Web of Science
19. Pierotti, J., Kronmueller, M., Alonso-Mora, J., Essen, J. and Böhmer, W., 2021. Reinforcement Learning for the Knapsack Problem. In Optimization and Data Science: Trends and Applications (pp. 3-13). Springer, Cham. - 2021 - в издания, индексирани в Scopus или Web of Science
20. 23. da Costa, P., Rhuggenaath, J., Zhang, Y., Akcay, A. and Kaymak, U., 2021. Learning 2-Opt Heuristics for Routing Problems via Deep Reinforcement Learning. SN Computer Science, 2(5), pp.1-16. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
21. [22] Kirilov, S., I. Zaykov., “A Neural Network with HfO2 Memristors”, Proc. Tech. Univ. of Sofia, ISSN: 1311-0829, Vol.. 71, No. 1, 2021. - 2021 - в български издания
22. 118) Lin, F. and Hsieh, H.P., 2022. A Grid-Based Two-Stage Parallel Matching Framework for Bi-Objective Euclidean Traveling Salesman Problem. ACM Transactions on Spatial Systems and Algorithms. (Google Scholar) - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
23. 120) Μπούγας, Γ., 2022. Σύγκριση Μεθόδων Deep Learning και Reinforcement Learning για την επίλυση του προβλήματος του Περιοδεύοντος Πωλητή. (Google Scholar) - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
24. 121) Lin, F. and Hsieh, H.P., 2022. Traveling Transporter Problem: Arranging a New Circular Route in a Public Transportation System Based on Heterogeneous Non-Monotonic Urban Data. ACM Transactions on Intelligent Systems and Technology (TIST), 13(3), pp.1-25. (Scopus, Web of Science) IF 4.654 - 2022 - в издания, индексирани в Scopus или Web of Science
25. De Sirisuriya, S.C.M.S., Fernando, T.G.I. and Ariyaratne, M.K.A., 2023. Algorithms for path optimizations: a short survey. Computing, vol. 105, issue (2), pp.293-319., DOI10.1007/s00607-022-01126-w (Web of Science, Google Scholar) IF 2.396 - 2023 - в издания, индексирани в Scopus или Web of Science
26. FENOY BARCELÓ, A., 2023. Combining Optimization and Machine Learning for the Formation of Collectives. PhD Thesis, pp. 1-110, https://iris.univr.it/handle/11562/1102626 (Google Scholar) - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
27. Sui, J., Ding, S., Xia, B., Liu, R. and Bu, D., 2023. NeuralGLS: learning to guide local search with graph convolutional network for the traveling salesman problem. Neural Computing and Applications, pp.1-20. ISSN 09410643, DOI 10.1007/s00521-023-09042-6 (Web of Science, Scopus, Google Scholar) IF 6.0, SJR 1.169 - 2023 - в издания, индексирани в Scopus или Web of Science
Вид: постер/презентация в международен форум, публикация в реферирано издание, индексирана в Scopus