Autors: Yordanova, S. T., Jain L. Title: Design of Process Fuzzy Control for Programmable Logic Controllers Keywords: fuzzy PI-like controllers design; robust performance; tuning Abstract: Programmable logic controllers (PLCs) assist the wider application of process fuzzy logic controllers (FLCs). The fuzzy control algorithms however should be simple because of the bounded computational time and load of real time operation. The existing FLC algorithms and their design methods are complex, iterative and require qualified experts and specific software. This research aims at the development of an engineering design for simple PI-like FLCs, which ensures system robustness and can be performed by PLCs. The design is based on the derivation of tuning models employing the least square error method and an artificial neural networks approach. The tuning models relate the FLC’ parameters and the parameters of the nominal plant model, the plant uncertainty, and the fuzzy unit. The engineering design is applied for the real time control of a laboratory dryer temperature. References Issue
|
Цитирания (Citation/s):
1. Fangwei Li, Wang Zhenqing (2013) Temperature Control of Evaporative Cooler for Converter Dry Dedusting. TELKOMNIKA 11(9): 5402-5408, e-ISSN: 2087-278X - 2013 - в издания, индексирани в Scopus или Web of Science
2. Shen Q., Jiang B., Shi P., Zhao J. (2013) Cooperative Adaptive Fuzzy Tracking Control for Networked Unknown Nonlinear Multiagent Systems with Time-Varying Actuator Faults. IEEE TFS 22(3): 494-504, ISSN 1063-6706 - 2013 - в издания, индексирани в Scopus или Web of Science
3. David RC, Precup RE, EM Petriu, MB Rădac, S Preitl (2013) Gravitational Search Algorithm-based Design of Fuzzy Control Systems with a Reduced Parametric Sensitivity. Information Sciences 247: 154-173 - 2013 - в издания, индексирани в Scopus или Web of Science
4. Yuan Chen, Guifu Mei, Guangying Ma, Shuxia Lin and Jun Gao (2014) Robust Adaptive Inverse Dynamics Control for Uncertain Robot Manipulator. International Journal of Innovative Computing, Information and Control, ICIC International 10(2): 575-587, ISSN 1349-4198 - 2014 - в издания, индексирани в Scopus или Web of Science
5. Shen, Q. (2023). Distributed Cooperative Neural Fault-Tolerant Sliding Mode Control Against Actuator Faults. In: Distributed Fault-Tolerant Consensus Control of Leader-Following Systems. Intelligent Control and Learning Systems, Book series, vol 11. Springer, Singapore. ISBN Print/Online 978-981-99-7425-2/978-981-99-7426-9, https://doi.org/10.1007/978-981-99-7426-9_2 - 2023 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор