Autors: Spasova, V. G., Iliev, I. T., Petrova, G. I. Title: Privacy preserving fall detection based on simple human silhouette extraction and a linear support vector machine Keywords: fall detection, linear support vector machine, assistive sys Abstract: The paper presents a novel fast, real-time and privacy protecting algorithm for fall detection based on geometric properties of the human silhouette and a linear support vector machine. The algorithm uses infrared and visible light imagery in order to detect the human. A simple real-time human silhouette extraction algorithm has been developed and used to extract features for training of the support vector machine. The achieved sensitivity and specificity of the proposed approach are over 97% which match state of the art research in the area of fall detection. The developed solution uses low-cost hardware components and open source software library and is suitable for usage in assistive systems for the home or nursing homes. References Issue
|
Цитирания (Citation/s):
1. Wang, X., Ellul, J., Azzopardi, G., Elderly Fall Detection Systems: A Literature Survey, Frontiers in Robotics and AI 7,71 - 2020 - в издания, индексирани в Scopus или Web of Science
2. Zhang, S., Li, Z., Wei, Z., Wang, S., An automatic human fall detection approach using RGBD cameras, Proceedings of 2016 5th International Conference on Computer Science and Network Technology, ICCSNT 2016 8070265, pp. 781-784 - 2017 - в издания, индексирани в Scopus или Web of Science
3. Wang, X., The application of genetic algorithms in the biological medical diagnostic research, International Journal Bioautomation 20(4), pp. 493-504 - 2016 - в издания, индексирани в Scopus или Web of Science
4. Performance, Challenges, and Limitations in Multimodal Fall Detection Systems: A Review - 2021 - в издания, индексирани в Scopus или Web of Science
5. Performance, Challenges, and Limitations in Multimodal Fall Detection Systems: A Review - 2021 - в издания, индексирани в Scopus или Web of Science
6. Zhao, Y., Gao, Y., Zhai, J., Li, D., A Data Augmentation Strategy for Skeleton-Based Fall Detection, Proceeding - 2021 China Automation Congress, CAC 2021 pp. 7188-7193 - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
7. Petrova, G., Spasov, G., Iliev, I., A Review on Applications of Low-resolution IR Array Sensors in Ambient-Assisted Living, 2021 30th International Scientific Conference Electronics, ET 2021 - Proceedings, DOI: 10.1109/ET52713.2021.9579477 - 2021 - в издания, индексирани в Scopus или Web of Science
8. Guerra, B.M.V., Torti, E., Marenzi, E., (...), Leporati, F., Danese, G., Ambient assisted living for frail people through human activity recognition: state-of-the-art, challenges and future directions, Frontiers in Neuroscience 17,1256682 - 2023 - в издания, индексирани в Scopus или Web of Science
9. Fall Detection Based on Fusion of Passive and Active Acoustic Sensing Chen, D., Wong, A.B., Wu, K. 2024 IEEE Internet of Things Journal 11(7), pp. 11566-11578 - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание