Autors: Tsokov, S. A., Lazarova, M. K., Aleksieva-Petrova, A. P. Title: Accelerometer-based human activity recognition using 1D convolutional neural network Keywords: human activity recognition, 1D convolutional neural network, Abstract: Human activity recognition (HAR) is an important research field with a variety of applications in healthcare monitoring, fitness tracking and in user-adaptive systems in smart environments. The performance of the activity recognition system is highly dependent on the features extracted from the sensor data which makes the selection of appropriate features a very important part of HAR. A 1D CNN model trained on accelerometer data is suggested in the paper for automatic feature extraction in a HAR system. A semi-automatic approach is used that effectively and efficiently determines the number of convolutional layers in the network, the number of kernels and the size of the kernels. The experimental results show that the suggested model outperforms several existing recognition approaches that use the same data set. References Issue
|
Цитирания (Citation/s):
1. M. Toğaçar, Detection of retinopathy disease using morphological gradient and segmentation approaches in fundus images, Journal Computer Methods and Programs in Biomedicine, Vol. 214, 2022, 106579, ISSN 0169-2607, https://doi.org/10.1016/j.cmpb.2021.106579. - 2021 - в издания, индексирани в Scopus или Web of Science
2. M. Toğaçar, B. Ergen, Recognition Human Activities by Convolutional Based Bidirectional LSTM Model Using ECG Signal Data, Proc. of International Conference on Advanced Engineering, Technology and Applications (ICAETA),Istanbul, Turkey, July 09-11, 2021, ISBN: 2752-8340 - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
3. Huynh, PH., Nguyen, V.H. (2022). Deep Convolutional Support Vector Machines for Human Activity Recognition. In: Nguyen, NT., Dao, NN., Pham, QD., Le, H.A. (eds) Intelligence of Things: Technologies and Applications . ICIT 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 148. Springer, Cham. https://doi.org/10.1007/978-3-031-15063-0_30 - 2022 - в издания, индексирани в Scopus или Web of Science
4. Mo L, Zhu Y, Zeng L. A Multi-Label Based Physical Activity Recognition via Cascade Classifier. Sensors. 2023; 23(5):2593. https://doi.org/10.3390/s23052593 - 2023 - в издания, индексирани в Scopus или Web of Science
5. Zhao, C., F. Gao, Z. Shen, Multi-motion sensor behavior based continuous authentication on smartphones using gated two-tower transformer fusion networks, Computers and Security, Vol. 139, art. no. 103698, 2024, DOI: 10.1016/j.cose.2023.103698 - 2023 - в издания, индексирани в Scopus или Web of Science
6. Karsh, B., R. Laskar, R. Karsh, Human Action Recognition using Attention EfficientNet, 2023 6th International Conference on Signal Processing and Information Security, ICSPIS 2023, pp. 67-70, DOI: 10.1109/ICSPIS60075.2023.10344070 - 2023 - в издания, индексирани в Scopus или Web of Science
7. Boyer, P., Machine Learning At-Home Physiotherapy Adherence, PhD Thesis, 2023, University of Toronto, Canada - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
8. AlAmeri, M., Q. Memon, Experimental analysis of accelerometer data for human activity recognition, International Conference on Mathematical and Statistical Physics, Computational Science, Education and Communication (ICMSCE 2023), Vol. 12936, pp. 407-411, 2023, https://doi.org/10.1117/12.3011422 - 2023 - в издания, индексирани в Scopus или Web of Science
Вид: публикация в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science