Autors: Popov, V. L., Ahmed, S. A., Shakev, N. G., Topalov, A. V.
Title: Detection and Following of Moving Targets by an Indoor Mobile Robot using Microsoft Kinect and 2D Lidar Data
Keywords: Mobile robots, Autonomous robotic systems, Perception and sensing, Information and sensor fusion, Decision making and cognitive processes

Abstract: The mobile robot following behavior is frequently considered as an important pre-requisite while developing autonomous service robots intended to co-exist with humans in a shared environment. It can also simplify the development of autonomous navigation and obstacle avoidance behavior as well as the robot ability to operate within multi-agent formations. In this investigation, an approach is proposed that allows a KUKA youBot omnidirectional mobile platform to detect and follow people carrying different objects, such as suitcases, in a shared indoor environment. Using a Kinect sensor, the mobile robot can recognize standing human with a suitcase and will begin to consider him as a potential dynamic target. The 2D lidar of the mobile platform can further detect when the above target starts to move and will begin to track it. Meanwhile, the robot will start following the human by controlling its own velocity while maintaining a pre-specified orientation and distance. © 2018 IEEE.

References

    Issue

    IEEE 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 2018, Singapore, DOI 10.1109/ICARCV.2018.8581231

    Copyright IEEE Xplore

    Цитирания (Citation/s):
    1. Islam M.J., Hong J., Sattar J. Person-following by autonomous robots: A categorical overview, International Journal of Robotics Research 38(14), pp. 1581-1618, 2019 - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Deremetz M., Lenain R., Laneurit J., Debain C., Peynot T., Autonomous human tracking using uwb sensors for mobile robots: An observer-based approach to follow the human path, CCTA 2020 - 4th IEEE Conference on Control Technology and Applications 9206153, pp. 372-379 - 2020 - в издания, индексирани в Scopus или Web of Science
    3. Janzon S., Sanchez C.M., Zella M., Marron P.J., Person Re-Identification in Human following Scenarios: An Experience with RGB-D Cameras, Proceedings - 4th IEEE International Conference on Robotic Computing, IRC 2020 9287913, pp. 424-425 - 2020 - в издания, индексирани в Scopus или Web of Science
    4. Arenas R.T., Delmas P.J., Strozzi A.G., Development of a Virtual Environment Based Image Generation Tool for Neural Network Training, International Conference Image and Vision Computing New Zealand 2020-November,9290491 - 2020 - в издания, индексирани в Scopus или Web of Science
    5. Rodríguez-Quiñonez J.C., Intelligent Automatic Object Tracking Method by Integration of Laser Scanner System and INS, Programming and Computer Software 46(8), pp. 619-625 - 2020 - в издания, индексирани в Scopus или Web of Science
    6. Li, L., Cai, C., Robust SLAM in Dynamic Scenes Based on Deep Learning and Edge Detection, Chinese Journal of Sensors and Actuators 34(1), pp. 80-88 - 2021 - в издания, индексирани в Scopus или Web of Science
    7. Bae K., Son Y., Song Y.-E., Jung H., Component-Wise Error Correction Method for UWB-Based Localization in Target-Following Mobile Robot, (2022) Sensors, 22 (3), art. no. 1180, DOI: 10.3390/s22031180 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123957094&doi=10.3390%2fs22031180&partnerID=40&md5=771bf01b401fa1404eedbf76071ac369 - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    8. Lv Z., Song S., Yin H., Design of Intelligent Epidemic Prevention Robot Control System Based on Single-Chip Microcomputer, Proceedings - 2022 International Conference on Big Data, Information and Computer Network, BDICN 2022, pp. 586 - 591 DOI: 10.1109/BDICN55575.2022.00113 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129596502&doi=10.1109%2fBDICN55575.2022.00113&partnerID=40&md5=0033bf8ea3c11fcbe4c0cece620285e3 - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science

    Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science