Autors: Yordanova, S. T., Yankov V., Jain L.
Title: MIMO fuzzy logic supervisor-based adaptive control using the example of coupled-tanks levels control
Keywords: Coupled levels, Fuzzy logic, Fuzzy supervisor adaptation, Ly

Abstract: Fuzzy logic (FL) controllers (FLCs) ensure stable and robust control of multi-input multi-output (MIMO) nonlinear industrial processes with no reliable models. To respond to the plant changes and the requirements of industrial implementation a design approach is suggested for computationally simple MIMO FL supervisor-based adaptive FLCs (SAFLCs) suitable for use by programmable logic controllers (PLCs). The SAFLC consists of a main model-free MIMO FLC and a MIMO FL supervisor (FLS) for keeping desired system performance by on-line adaption of the FLC’s scaling factors. The real time plant control by the empirically designed FLC provides data for the derivation via genetic algorithms (GAs) of a transfer matrix-based Takagi-Sugeno-Kang (TSK) plant model and for its validation. The TSK plant model enables computational system sensitivity analysis for the design of the optimal structure MIMO FLS. The SAFLC is approximated to a simple PLC feasible parallel distributed compensation (PDC).

References

    Issue

    Int. J. Innovative Comput. Inf. Control, vol. 13, issue 2, pp. 453-470, 2017, United Kingdom,

    Цитирания (Citation/s):
    1. . Xinxin Liu; Xiaojie Su; Peng Shi; Chao Shen, Observer-Based Sliding Mode Control for Uncertain Fuzzy Systems via Event-Triggered Strategy, IEEE Transactions on Fuzzy Systems 27(11), pp.2190-2201, DOI: 10.1109/TFUZZ.2019.2895804 - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Xiao-Lei Wang, Guang-Hong Yang, H ∞ filtering for T-S fuzzy systems with multiple time-varying delays: An improved delays-dependent region partitioning method, Information Sciences 481 pp. 368–380, https://doi.org/10.1016/j.ins.2018.12.088 - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Wang, M, Qiu, JB, Feng, G, A Novel Piecewise Affine Filtering Design for T-S Fuzzy Affine Systems Using Past Output Measurements, IEEE Transactions on Cybernetics 50(4), pp.1509-1518, DOI: 10.1109/TCYB.2018.2883476 - 2020 - в издания, индексирани в Scopus или Web of Science
    4. Nath, Ujjwal Manikya; Dey, Chanchal; Mudi, Rajani K., Fuzzy rule-based auto-tuned internal model controller for real-time experimentation on temperature and level processes, International Journal of Automation and Control, 14(2), pp. 239-256 - 2020 - в издания, индексирани в Scopus или Web of Science
    5. Islam, S.I., Shi, P. & Lim, CC. Robust functional observer for stabilising uncertain fuzzy systems with time-delay. Granul. Comput. 5, pp. 55–69, https://doi.org/10.1007/s41066-018-0138-x - 2020 - в издания, индексирани в Scopus или Web of Science
    6. Ye Tian, Zheng Chu, Gang Ma (2021) Fuzzy logic control theory in clinical anesthesia, Expert Systems , online Early Access, https://doi.org/10.1111/exsy.12761 - 2021 - в издания, индексирани в Scopus или Web of Science
    7. Atig A., Druaux F., Lefebvre D., Abdennour R.B. (2022) A multi-objective criterion and stability analysis for neural adaptive control of nonlinear MIMO systems: an experimental validation, International Journal of Automation and Control, 16(3-4), pp. 433-458. - 2022 - в издания, индексирани в Scopus или Web of Science
    8. Uçak, K., & Arslantürk, B. N. (2023). Adaptive MIMO fuzzy PID controller based on peak observer. An Int. Journal of Optimization and Control: Theories & Applications (IJOCTA) 13(2), pp. 139–150. https://doi.org/10.11121/ijocta.2023.1247 - 2022 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор