Autors: Yordanova, S. T., Petrova R., Noykova N., Tzvetkov, P. M. Title: Neuro-fuzzy modelling in anaerobic wastewater treatment for prediction and control Keywords: Anaerobic digestion of organic waste, neuro-fuzzy modelling, Abstract: The aim of the present paper is to develop neuro-fuzzy prediction models in MATLAB environment of the anaerobic organic digestion process in wastewater treatment from laboratory and simulated experiments accounting for the variable organic load, ambient influence and microorganisms state. The main contributions are determination of significant model parameters via graphical sensitivity analysis, simulation experimentation, design and study of two “black-box” models for the biogas production rate, based on classical feedforward backpropagation and Sugeno fuzzy logic neural networks respectively. The models application is demonstrated in process predictive control. References Issue
|
Цитирания (Citation/s):
1. Anfal Majid Salal, Dr.Basim Hussein Khudair, Influent Flow Rate Effect On Sewage Pump Station Performance Based On Organic And Sediment Loading, Journal of Engineering 25(9), pp. 1-11 - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
2. Islam, S.I., Shi, P. & Lim, CC. Robust functional observer for stabilising uncertain fuzzy systems with time-delay. Granul. Comput. 5, pp.55–69 , https://doi.org/10.1007/s41066-018-0138-x - 2020 - в издания, индексирани в Scopus или Web of Science
3. Narendar Singh D, Murugamani C, Pravin R. Kshirsagar , Vineet Tirth, Saiful Islam, Sana Qaiyum,Suneela B, Mesfer Al Duhayyim, and Yosef Asrat Waji (2022) IOT Based Smart Wastewater Treatment Model for Industry 4.0 Using Artificial Intelligence. Scientific Programming, Vol. 2022, Article ID 5134013, 11 pages, https://doi.org/10.1155/2022/5134013 - 2022 - в издания, индексирани в Scopus или Web of Science
4. P. William, O. J. Oyebode, G. Ramu, M. Gupta, L. H. Alzubaidi and A. P. Srivastava (2023). Architecture for AI-Based Validation of Wastewater Management Using Open Data Exchange Technique. Proc. IEEE 2023 Int. Conf on Circuit Power and Computing Technologies (ICCPCT), Kollam, India, pp. 1502-1507,doi: 10.1109/ICCPCT58313.2023.10244857 - 2023 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в реферирано издание