Autors: Yordanova, S. T., Slavov M., Gueorguiev B.
Title: Parallel distributed compensation for improvement of level control in carbonization column for soda production
Keywords: carbonisation column, level control, parallel distributed co

Abstract: The liquid level control is essential in many production installations but the classic approaches often fail to ensure the desired performance. The reasons are the plant nonlinearity, the level oscillations and the plant model uncertainties. The aim of the present investigation is to improve the existing linear control of the level in the carbonisation columns for soda ash production by employing fuzzy logic using parallel distributed compensation (PDC). The design of the PDC is based on a nonlinear Takagi- Sugeno-Kang (TSK) plant model which is derived via genetic algorithms optimization and validated using the data from the real time linear level control. The PDC control performs soft blending of the outputs of several parallel local linear controllers each developed for the local linear plant of the TSK model. The fuzzy rules are represented by ordinary logics conditions to enable the PDC programming and use by an industrial programmable logic controller.

References

    Issue

    Control Eng. Practice, vol. 71, pp. 53-60, 2018, United Kingdom,

    Цитирания (Citation/s):
    1. José Pinheiro de Moura, João Viana da Fonseca Neto, Patrícia Helena Moraes Rêgo, A Neuro-Fuzzy Model for Online Optimal Tuning of PID Controllers in Industrial System Applications to the Mining Sector, IEEE Transactions on Fuzzy Systems 28(8), pp. 1864 – 1877, DOI: 10.1109/TFUZZ.2019.2923963 - 2019 - в издания, индексирани в Scopus или Web of Science
    2. E. Yazid, M. Garratt, F. Santoso, Position control of a quadcopter drone using evolutionary algorithms-based self-tuning for first-order Takagi–Sugeno–Kang fuzzy logic autopilots , Applied Soft Computing Journal 78, pp.373-392, https://doi.org/10.1016/j.asoc.2019.02.023 - 2016 - в издания, индексирани в Scopus или Web of Science
    3. E. Yazid, M. Garratt, F. Santoso, Position control of a quadcopter drone using evolutionary algorithms-based self-tuning for first-order Takagi–Sugeno–Kang fuzzy logic autopilots , Applied Soft Computing Journal 78, pp.373-392, https://doi.org/10.1016/j.asoc.2019.02.023 - 2019 - в издания, индексирани в Scopus или Web of Science
    4. TBS Moreira, MVS Costa, FG Nogueira (2022) Output feedback Takagi-Sugeno fuzzy model predictive control through linear matrix inequalities approaches, Int. Journal of Modelling, Identification and Control 40(1): 84-91, DOI: 10.1504/IJMIC.2022.124068, https://www.inderscienceonline.com/doi/abs/10.1504/IJMIC.2022.124068 - 2022 - в издания, индексирани в Scopus или Web of Science
    5. Hajar, I., Damiri, D. and Sitorus, M. (2023). Penggunaan PLC dan HMI dalam Simulasi Kendali Ketinggian Air, Prosiding-SNEKTI Seminar Nasional Energi, Kelistrikan, Teknik Dan Informatika 3,1-11. https://aperti.e-journal.id/snekti/article/view/144 - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    6. Ibnu Hajar, Dhami Johar Damiri, Meyharth Torsna Bangkit Sitorus (2023). Automatic Water Level and Pressure Control System Prototype Design Using Programmable Logic Controller and Human Machine Interface, Int. Journal of Advanced Science Computing and Engineering 5(2), pp. 108-118, ISSN 2714-7533, DOI: https://doi.org/10.30630/ijasce.5.2.127 - 2023 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор