Autors: Karuna Bosale., Nenova, M. V., Iliev, G. L. Title: Modified Naive Bayes Intrusion Detection System (MNBIDS) Keywords: Modified Naïve Bayes , DDoS , KDD Cup 99 , SVM , CNN , KNN , Abstract: In this result paper we presenting Modified Naïve Bayes Intrusion Detection System (MNBIDS), it is based on the existing Naïve Bayes system. In that we perform the data pre-processing, data normalization and feature extraction. Now a day's Network security is turning into an expanding vital issue, since the fast advancement of the Web. Information mining and machine learning innovation have been broadly connected to network interruption recognition and anticipation frameworks by finding client behavior standards from the network traffic information. In this system, we use real time packet, which is used to real time analysis and also the KDD Cup 99 dataset for the execution. In this system we use the different classifiers on this real time packets and KDD dataset for the comparison of obtained results. In this system we use the Data Pre-processing algorithm, Hybrid Feature Selection Algorithm and Modified Naïve Bayes Algorithm. Using these algorithms we improve the system accuracy and References Issue
|
Цитирания (Citation/s):
1. I Sumaiya Thaseen, B Poorva, P Sai Ushasree, "Network Intrusion Detection using Machine Learning Techniques", Emerging Trends in Information Technology and Engineering (ic-ETITE) 2020 International Conference on, pp. 1-7, 2020 - 2020 - в издания, индексирани в Scopus или Web of Science
2. PATIL, Tanuja K.; NAGARAJA, G. S. Evaluation of Supervised Learning Methods for Network Intrusion Detection. Wutan Huatan Jisuan Jishu, ISSN:1001-1749, Volume XVI, Issue VI, JUNE/2020, pp.495-502. - 2020 - в издания, индексирани в Scopus или Web of Science
3. ROKADE, Monika D.; SHARMA, Yogesh Kumar. MLIDS: A Machine Learning Approach for Intrusion Detection for Real Time Network Dataset. In: 2021 International Conference on Emerging Smart Computing and Informatics (ESCI). IEEE, 2021. p. 533-536. - 2021 - в издания, индексирани в Scopus или Web of Science
4. KASONGO, Sydney Mambwe. Development and Evaluation of a Deep Learning Based Intrusion Detection Model for Wireless Networks. University of Johannesburg (South Africa), 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
5. JAHWAR, Alan Fuad; AMEEN, Siddeeq Y. A Review on Cybersecurity based on Machine Learning and Deep Learning Algorithms. Journal of Soft Computing and Data Mining, VOL.2 NO. 2, pp. 14-25, e-ISSN : 2716-621X, 2021. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
6. SALIH, Azar Abid; ABDULAZEEZ, Adnan Mohsin. Evaluation of classification algorithms for intrusion detection system: A review. Journal of Soft Computing and Data Mining, 2.1: 31-40. DOI: https://doi.org/10.30880/jscdm.2021.02.01.004, 2021 - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
7. Rahman, M.A., Asyhari, A.T., Wen, O.W. et al. Effective combining of feature selection techniques for machine learning-enabled IoT intrusion detection. Multimed Tools Appl 80, 31381–31399 (2021). https://doi.org/10.1007/s11042-021-10567-y - 2021 - в издания, индексирани в Scopus или Web of Science
8. 3. LI, Junhong. Detection of ddos attacks based on dense neural networks, autoencoders and pearson correlation coefficient, MSc Thesis, Dalhousie University, Halifax, Nova Scotia, April 2020 - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
9. RIYADH, Musaab; ALI, Basim Jamil; ALSHIBANI, Dina Riadh. IDS-MIU: An Intrusion Detection System Based on Machine Learning Techniques for Mixed type, Incomplete, and Uncertain Data Set, International Journal of Intelligent Engineering and Systems, Vol. 14, No. 3, DOI: 10.22266/ijies2021.0630.41, 2021 - 2021 - в издания, индексирани в Scopus или Web of Science
10. RASANE, Gauri; RATHOD, Sunil. Intrusion Detection System and vulnerability identification using various Machine learning Algorithms. EasyChair preprint 2427, 2020 - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
11. Kumar, A., Umurzoqovich, R. S., Duong, N. D., Kanani, P., Kuppusamy, A., Praneesh, M., & Hieu, M. N. (2022). An intrusion identification and prevention for cloud computing: From the perspective of deep learning. Optik, 270, 170044. - 2022 - в издания, индексирани в Scopus или Web of Science
12. Ghosh, A., & Senthilrajan, A. (2022, May). A Modified Naïve Bayes Classifier for Detecting Spam E-mails based on Feature Selection. In 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1634-1641). IEEE. - 2022 - в издания, индексирани в Scopus или Web of Science
13. Suryadewiansyah, M. K., & Tju, T. E. E. (2022). Naïve Bayes dan Confusion Matrix untuk Efisiensi Analisa Intrusion Detection System Alert. Jurnal Nasional Teknologi dan Sistem Informasi, 8(2), 81-88. - 2022 - в издания, индексирани в Scopus или Web of Science
14. Doherey, A., Singh, A., & Kumar, A. (2022, June). Intrusion Detection using Dense Neural Network in Network System. In 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom) (pp. 484-488). IEEE. - 2022 - в издания, индексирани в Scopus или Web of Science
15. Kumar, M. R., & Malathi, K. (2022, February). An Innovative Method in Classifying and predicting the accuracy of intrusion detection on cybercrime by comparing Decision Tree with Support Vector Machine. In 2022 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-6). IEEE. - 2022 - в издания, индексирани в Scopus или Web of Science
16. Z. Ma, L. Liu, W. Meng, X. Luo, L. Wang and W. Li, "ADCL: Toward an Adaptive Network Intrusion Detection System Using Collaborative Learning in IoT Networks," in IEEE Internet of Things Journal, vol. 10, no. 14, pp. 12521-12536, 15 July15, 2023, doi: 10.1109/JIOT.2023.3248259 - 2023 - в издания, индексирани в Scopus или Web of Science
17. Das, P., Saif, S. (2023). Intrusion Detection in IoT-Based Healthcare Using ML and DL Approaches: A Case Study. In: Sarveshwaran, V., Chen, J.IZ., Pelusi, D. (eds) Artificial Intelligence and Cyber Security in Industry 4.0. Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-99-2115-7_12 - 2023 - в издания, индексирани в Scopus или Web of Science
18. Prajapati, G., Singh, P., Rahul (2023). Anomaly Based Network Intrusion Detection System for IoT. In: Saraswat, M., Chowdhury, C., Kumar Mandal, C., Gandomi, A.H. (eds) Proceedings of International Conference on Data Science and Applications. Lecture Notes in Networks and Systems, vol 552. Springer, Singapore. https://doi.org/10.1007/978-981-19-6634-7_49 - 2023 - в издания, индексирани в Scopus или Web of Science
19. C. Iyanu-Oluwa Onietan, I. Martins, T. Owoseni, E. C. Omonedo and C. P. Eze, "A Preliminary Study on the Application of Hybrid Machine Learning Techniques in Network Intrusion Detection Systems," 2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG), Omu-Aran, Nigeria, 2023, pp. 1-7, doi: 10.1109/SEB-SDG57117.2023.10124596 - 2023 - в издания, индексирани в Scopus или Web of Science
20. Zulfikri, A., Gunawan, & Andriani, W. . (2023). Tinjauan Pustaka Sistematis: Penerapan Metode Naives Bayes untuk Klasifikasi dalam Dataset Cuaca. Journal of Practical Computer Science, 2(2), 90-95. https://doi.org/10.37366/jpcs.v2i2.2101 - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
21. Narudkar, M. S., Mahajan, A., & Agarkar, P. (2023). Intrusion Detection for real time Network Dataset using PCA and Random Forest Algorithms. INTERNATIONAL JOURNAL, 7(9). - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science