Autors: Stefanov, I. Z., Gyulchev, G.N., Yazadjiev, S.S.
Title: Connection between black-hole quasinormal modes and lensing in the strong deflection limit
Keywords: General relativity; black holes; Quasi-normal modes; gravita

Abstract: The purpose of the current Letter is to give some relations between gravitational lensing in the strong-deflection limit and the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. On the one side, the relations obtained can give a physical interpretation of the strong-deflection limit parameters. On the other side, they also give an alternative method for the measurement of the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. They could be applied to the localization of the sources of gravitational waves and could tell us what frequencies of the gravitational waves we could expect from a black hole acting simultaneously as a gravitational lens and a source of gravitational waves.

References

    Issue

    Physical Review Letters, vol. 104, pp. 251103, 2010, United States, American Physical Society, https://doi.org/10.1103/PhysRevLett.104.251103

    Copyright American Physical Society

    Цитирания (Citation/s):
    1. Raffaelli, B., Hidden conformal symmetry on the black hole photon sphere, Journal of High Energy Physics 2022(3),125, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    2. P.A. González, Marco Olivares, Yerko Vásquez, Joel Saavedra, Ali Övgün, Motion and collision of particles near DST Black holes, Eur.Phys.J.C 79 (2019) 6, 528. - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Övgün, Ali; Sakallı, İzzet; Saavedra, Joel, Weak gravitational lensing by Kerr-MOG black hole and Gauss-Bonnet theorem, Annals of Physics, Volume 411, article id. 167978., 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
    4. Peng, Yan, The extreme orbital period in scalar hairy kerr black holes, Physics Letters B, Volume 792, pp. 1, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
    5. Övgün, Ali, Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss-Bonnet Theorem, Universe, vol. 5, issue 5, p. 115, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
    6. Peng, Yan, Upper bound on the radii of regular ultra-compact star photonspheres, Physics Letters B, Volume 790, p. 396-399.2019. - 2019 - в издания, индексирани в Scopus или Web of Science
    7. Wei, Shao-Wen; Liu, Yu-Xiao; Wang, Yong-Qiang, Probing the relationship between the null geodesics and thermodynamic phase transition for rotating Kerr-AdS black holes, Physical Review D, Volume 99, Issue 4, id.044013, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
    8. 41. Jusufi, Kimet, Quasinormal modes of black holes surrounded by dark matter and their connection with the shadow radius, Physical Review D, Volume 101, Issue 8, article id.084055, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    9. 42. Liu, Cheng; Zhu, Tao; Wu, Qiang; Jusufi, Kimet; Jamil, Mubasher; Azreg-Aïnou, Mustapha; Wang, Anzhong, Shadow and quasinormal modes of a rotating loop quantum black hole, Physical Review D, Volume 101, Issue 8, article id.084001, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    10. 43. Rahul Kumar, Sushant G. Ghosh, Black Hole Parameter Estimation from Its Shadow, Astrophys.J. 892 (2020). 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    11. 44. Hod, Shahar, Lower bound on the radii of black-hole photonspheres, Physical Review D, Volume 101, Issue 8, article id.084033, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    12. 45. Li, Haitang; Chen, Yong; Zhang, Shao-Jun, Photon orbits and phase transitions in Born-Infeld-dilaton black holes, Nuclear Physics, Section B, Volume 954, article id. 114975., 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    13. Rayimbaev, J., Majeed, B., Jamil, M., Jusufi, K., Wang, A., Quasiperiodic oscillations, quasinormal modes and shadows of Bardeen–Kiselev Black Holes, Physics of the Dark Universe 35,100930, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    14. Ali, M.S., Kauhsal, S., Gravitational lensing for stationary axisymmetric black holes in Eddington-inspired Born-Infeld gravity, Physical Review D 105(2),024062, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    15. Tsukamoto, N., Retrolensing by light rays slightly inside and outside of a photon sphere around a Reissner-Nordström naked singularity, Physical Review D 105(2),024009, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    16. Jafarzade, K., Zangeneh, M.K., Lobo, F.S.N., Optical Features of AdS Black Holes in the Novel 4D Einstein-Gauss-Bonnet Gravity Coupled to Nonlinear Electrodynamics, Universe 8(3),182, 2022 - 2022 - в издания, индексирани в Scopus или Web of Science
    17. Tsukamoto, N., Gravitational lensing by a photon sphere in a Reissner-Nordström naked singularity spacetime in strong deflection limits, Physical Review D 104(12),124016 - 2021 - в издания, индексирани в Scopus или Web of Science
    18. Hsieh, T., Lee, D.-S., Lin, C.-Y., Gravitational time delay effects by Kerr and Kerr-Newman black holes in strong field limits, Physical Review D, 104(10),104013. - 2021 - в издания, индексирани в Scopus или Web of Science
    19. Liu, Y.-C., Feng, J.-X., Shu, F.-W., Wang, A., Extended geometry of Gambini-Olmedo-Pullin polymer black hole and its quasinormal spectrum, Physical Review D, 104(10),106001. - 2021 - в издания, индексирани в Scopus или Web of Science
    20. Anacleto, M.A., Campos, J.A.V., Brito, F.A., Passos, E., Quasinormal modes and shadow of a Schwarzschild black hole with GUP, Annals of Physics, 434,168662. - 2021 - в издания, индексирани в Scopus или Web of Science
    21. Li, P.-C., Lee, T.-C., Guo, M., Chen, B.,Correspondence of eikonal quasinormal modes and unstable fundamental photon orbits for a Kerr-Newman black hole, Physical Review D, 104(8),084044. - 2021 - в издания, индексирани в Scopus или Web of Science
    22. Aratore, F., Bozza, V., Decoding a black hole metric from the interferometric pattern of the relativistic images of a compact source, Journal of Cosmology and Astroparticle Physics, 2021(10),054. - 2021 - в издания, индексирани в Scopus или Web of Science
    23. Tsukamoto, N., Gravitational lensing by two photon spheres in a black-bounce spacetime in strong deflection limits, Physical Review D, 104(6),064022. - 2021 - в издания, индексирани в Scopus или Web of Science
    24. Cuadros-Melgar, B., Fontana, R.D.B., de Oliveira, J., Analytical correspondence between shadow radius and black hole quasinormal frequencies, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 811,135966. - 2020 - в издания, индексирани в Scopus или Web of Science
    25. Guo, H., Liu, H., Kuang, X.-M., Wang, B., Acoustic black hole in Schwarzschild spacetime: Quasinormal modes, analogous Hawking radiation, and shadows, Physical Review D, 102(12),124019. - 2020 - в издания, индексирани в Scopus или Web of Science
    26. V. Perlick, Gravitational lensing from a spacetime perspective, Living Rev. Relativity, vol. 7, no. 9, 2004. - 2011 - в издания, индексирани в Scopus или Web of Science
    27. S. Fernando, J. Correa, Quasinormal modes of the Bardeen black hole: Scalar perturbations, Phys. Rev. D 86, 064039, 2012. - 2012 - в издания, индексирани в Scopus или Web of Science
    28. Y. Décanini, A. Folacci, B. Raffaelli, Fine structure of high-energy absorption cross sections for black holes, Class. Quant. Grav. 28, 175021, 2011. - 2011 - в издания, индексирани в Scopus или Web of Science
    29. S.W. Wei, Y.X. Liu, Equatorial and quasiequatorial gravitational lensingby a Kerr black hole pierced by a cosmic string, Phys. Rev. D 85, 064044, 2012. - 2012 - в издания, индексирани в Scopus или Web of Science
    30. S.W. Wei, Y.X. Liu, C.E. Fu, K. Yang, Strong field limit analysis of gravitational lensing in Kerr-Taub-NUT spacetime, JCAP 10, 053, 2012. - 2012 - в издания, индексирани в Scopus или Web of Science
    31. S.W. Wei, Y.X. Liu, H. Guo, Relationship between high-energy absorption cross section and strong gravitational lensing for black hole, Phys. Rev. D 84, 041501, 2011. - 2011 - в издания, индексирани в Scopus или Web of Science
    32. S.W. Wei, Y.X. Liu, C.E. Fu, Black hole spectroscopy from null geodesics, eprint arXiv:1301.7206, 2013. - 2013 - в издания, индексирани в Scopus или Web of Science
    33. S.W. Wei, Y.X. Liu, Establishing a universal relation between gravitational waves and black hole lensing, Phys.Rev.D 89, 047502, 2014. - 2014 - в издания, индексирани в Scopus или Web of Science
    34. S. Hod, Upper bound on the radii of black-hole photonspheres, Phys. Lett. B 727, 345, 2013. - 2013 - в издания, индексирани в Scopus или Web of Science
    35. S. Sahu, K. Lochan, D. Narasimha, Gravitational lensing by self-dual black holes in loop quantum gravity, Phys. Rev. D 91, 063001, 2015. - 2015 - в издания, индексирани в Scopus или Web of Science
    36. M. Sharif, S. Iftikhar, Null Geodesics and Strong Field Gravitational Lensing in a String Cloud Background, Adv. High Energy Phys. 2015, 635625, 2015. - 2015 - в издания, индексирани в Scopus или Web of Science
    37. M. Sharif, S. Iftikhar, Strong gravitational lensing in non-commutative wormholes, Ap&SS 357, 85, 2015. - 2015 - в издания, индексирани в Scopus или Web of Science
    38. S.W. Wei, Y.X. Liu, C.E. Fu, Null Geodesics and Gravitational Lensing in a Nonsingular Spacetime, Adv. High Energy Phys. 2015, 454217, 2015. - 2015 - в издания, индексирани в Scopus или Web of Science
    39. N. Tsukamoto, T. Kitamura, K. Nakajima, H. Asada, Gravitational lensing in Tangherlini spacetime in the weak gravitational field and the strong gravitational field, Phys. Rev. D 90, 064043, 2014. - 2014 - в издания, индексирани в Scopus или Web of Science
    40. B. Raffaelli, Strong gravitational lensing and black hole quasinormal modes: Towards a semiclassical unified description, preprint arXiv:1412.7333, 2014. - 2014 - в издания, индексирани в Scopus или Web of Science
    41. S.R. Dolan, E.S. Oliveira, Scattering by a draining bathtub vortex, Phys. Rev. D 87, 124038, 2013. - 2013 - в издания, индексирани в Scopus или Web of Science
    42. B. Raffaelli, Analyse semi-classique des phenomenes de resonance et d'absorption par des trous noirs. Physique des Hautes Energies - Theorie [hep-th]. Universite Pascal Paoli, 2011. Francais., дисертация. - 2011 - в издания, индексирани в Scopus или Web of Science
    43. Emanuel Gallo, J. R. Villanueva, Photon spheres in Einstein and Einstein-Gauss-Bonnet theories and circular null geodesics in axially-symmetric spacetimes, Phys. Rev. D 92, 92, 064048, 2015. - 2015 - в издания, индексирани в Scopus или Web of Science
    44. Shao-Wen Wei(Lanzhou U.), Yu-Xiao Liu(Lanzhou U.), Chun-E Fu(Xian Jiaotong U.), Quantization of black hole entropy from unstable circular null geodesics, Sci.China Phys.Mech.Astron. 59 (2016) 4, 640401, 2016. - 2016 - в издания, индексирани в Scopus или Web of Science
    45. 20. Raffaelli, Bernard, Strong gravitational lensing and black hole quasinormal modes: towards a semiclassical unified description, General Relativity and Gravitation, 48(2), 1-15, 2016. - 2016 - в издания, индексирани в Scopus или Web of Science
    46. Takao Kitamura(Hirosaki U.), Gravitational lensing in an exotic spacetime, Thesis: PhD Hirosaki U., 2016. - 2016 - в издания, индексирани в Scopus или Web of Science
    47. Dolan, Sam R.; Shipley, Jake O., Stable photon orbits in stationary axisymmetric electrovacuum spacetimes, Physical Review D, Volume 94, Issue 4, id.044038, 2016. - 2016 - в издания, индексирани в Scopus или Web of Science
    48. Naoki Tsukamoto, Strong deflection limit analysis and gravitational lensing of an Ellis wormhole, Phys.Rev.D 94 (2016) 12, 124001, 2016. - 2016 - в издания, индексирани в Scopus или Web of Science
    49. Kamal K. Nandi(Bashkir State Pedagogical Inst.), Ramil N. Izmailov(Bashkir State Pedagogical Inst.), Almir A. Yanbekov(Bashkir State Pedagogical Inst.), Azat A. Shayakhmetov(Bashkir State Pedagogical Inst.), Ring-down gravitational waves and lensing observables: How far can a wormhole mimic those of a black hole?, Phys.Rev.D 95 (2017) 10, 2017. - 2017 - в издания, индексирани в Scopus или Web of Science
    50. Tsukamoto, Naoki; Gong, Yungui, Retrolensing by a charged black hole, Physical Review D, Volume 95, Issue 6, id.064034, 2017. - 2017 - в издания, индексирани в Scopus или Web of Science
    51. Naoki Tsukamoto, Deflection angle in the strong deflection limit in a general asymptotically flat, static, spherically symmetric spacetime, Phys.Rev.D 95 (2017) 6, 2017. - 2017 - в издания, индексирани в Scopus или Web of Science
    52. andi, Kamal K.; Izmailov, Ramil N.; Yanbekov, Almir A.; Shayakhmetov, Azat A., Ring-down gravitational waves and lensing observables: How far can a wormhole mimic those of a black hole?, Physical Review D, Volume 95, Issue 10, id.104011, 2017. - 2017 - в издания, индексирани в Scopus или Web of Science
    53. Shoom, Andrey A., Metamorphoses of a photon sphere, Physical Review D, Volume 96, Issue 8, id.084056, 2017. - 2017 - в издания, индексирани в Scopus или Web of Science
    54. Naoki Tsukamoto, Black hole shadow in an asymptotically-flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes, 2018. - 2018 - в издания, индексирани в Scopus или Web of Science
    55. Shao-Wen Wei(Lanzhou U.), Yu-Xiao Liu(Lanzhou U.), Photon orbits and thermodynamic phase transition of dd-dimensional charged AdS black holes, Phys.Rev.D 97 (2018) 10, 104027, 2018. - 2018 - в издания, индексирани в Scopus или Web of Science
    56. Hod, Shahar, Analytic study of self-gravitating polytropic spheres with light rings, The European Physical Journal C, Volume 78, Issue 5, article id. 417, 6 pp., 2018. - 2018 - в издания, индексирани в Scopus или Web of Science
    57. Kimet Jusufi(State U., Tetova and Skopje U.), Ali Övgün(Valparaiso U., Catolica and Eastern Mediterranean U. and Fresno State), Joel Saavedra(Valparaiso U., Catolica), Yerko Vásquez(La Serena U.), P.A. González(Diego Portales U.), Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem, Phys.Rev.D 97 (2018) 12, 124024, 2018. - 2018 - в издания, индексирани в Scopus или Web of Science
    58. Övgün, Ali, Light deflection by Damour-Solodukhin wormholes and Gauss-Bonnet theorem, Physical Review D, Volume 98, Issue 4, id.044033, 2018. - 2018 - в издания, индексирани в Scopus или Web of Science
    59. Övgün, Ali; Sakallı, İzzet; Saavedra, Joel, Shadow cast and deflection angle of Kerr-Newman-Kasuya spacetime, Journal of Cosmology and Astroparticle Physics, Issue 10, article id. 041 (2018), 2018. - 2018 - в издания, индексирани в Scopus или Web of Science
    60. Javed, Wajiha; Hamza, Ali; Övgün, Ali, Effect of nonlinear electrodynamics on the weak field deflection angle by a black hole, Physical Review D, Volume 101, Issue 10, article id.103521, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    61. Shao-Wen Wei(Lanzhou U. and Waterloo U.), Yu-Xiao Liu(Lanzhou U.), Null Geodesics, Quasinormal Modes, and Thermodynamic Phase Transition for Charged Black Holes in Asymptotically Flat and dS Spacetimes, Chin.Phys.C 44 (2020) 11, 115103, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    62. Tsukamoto, Naoki, Nonlogarithmic divergence of a deflection angle by a marginally unstable photon sphere of the Damour-Solodukhin wormhole in a strong deflection limit, Physical Review D, Volume 101, Issue 10, article id.104021, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    63. Kimet Jusufi, Connection Between the Shadow Radius and Quasinormal Modes in Rotating Spacetimes, Phys.Rev.D 101 (2020) 12, 124063, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    64. Shahar Hod(Hadassah Coll., Jerusalem and Ruppin Acad. Ctr.), Lower bound on the radii of black-hole photonspheres, Phys.Rev.D 101 (2020) 8, 084033, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    65. Kimet Jusufi(State U., Tetova and Skopje U.), Muhammed Amir(KwaZulu Natal U.), Md Sabir Ali(Indian Inst. Tech., Ropar), Sunil D. Maharaj(KwaZulu Natal U.), Quasinormal modes, shadow and greybody factors of 5D electrically charged Bardeen black holes, Phys.Rev.D 102 (2020) 6, 064020, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    66. Mondal, Monimala; Pradhan, Parthapratim; Rahaman, Farook; Karar, Indrani, Geodesic stability and quasi normal modes via Lyapunov exponent for Hayward black hole, Modern Physics Letters A, Volume 35, Issue 30, id. 2050249, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    67. Wei, Shao-Wen, Topological charge and black hole photon spheres, Physical Review D, Volume 102, Issue 6, article id.064039, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    68. Yang, Run-Qiu; Lü, H., Universal bounds on the size of a black hole, The European Physical Journal C, Volume 80, Issue 10, article id.949, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    69. Naveena Kumara, A.; Ahmed Rizwan, C. L.; Punacha, Shreyas; Ajith, K. M.; Ali, Md Sabir, Photon orbits and thermodynamic phase transition of regular AdS black holes, Physical Review D, Volume 102, Issue 8, article id.084059, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    70. Guo, Yang; Miao, Yan-Gang, Null geodesics, quasinormal modes, and the correspondence with shadows in high-dimensional Einstein-Yang-Mills spacetimes, Physical Review D, Volume 102, Issue 8, article id.084057, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    71. Wei, Shao-Wen; Liu, Yu-Xiao, Null geodesics, quasinormal modes, and thermodynamic phase transition for charged black holes in asymptotically flat and dS spacetimes, Chinese Physics C, Volume 44, Issue 11, id.115103, 12 pp., 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    72. Ghasemi-Nodehi, M.; Azreg-Aïnou, Mustapha; Jusufi, Kimet; Jamil, Mubasher, Shadow, quasinormal modes, and quasiperiodic oscillations of rotating Kaluza-Klein black holes Physical Review D, Volume 102, Issue 10, article id.104032, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    73. Tsukamoto, Naoki, Deflection angle of a light ray reflected by a general marginally unstable photon sphere in a strong deflection limit, Physical Review D, Volume 102, Issue 10, article id.104029, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    74. Khan, Saeed Ullah; Ren, Jingli, Shadow cast by a rotating charged black hole in quintessential dark energy, Physics of the Dark Universe, Volume 30, article id. 100644., 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    75. Kruglov, S.I. New model of 4d einstein–gauss–bonnet gravity coupled with nonlinear electrodynamics, Universe, 7 (7), art. no. 249, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    76. Chaudhary, S., Jawad, A., Jusufi, K., Yasir, M. Extended GUP corrected thermodynamics, shadow radius and quasinormal modes of charged AdS black holes in Gauss-Bonnet gravity, Modern Physics Letters A, 36 (20), art. no. 2150137, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    77. Kruglov, S.I. Einstein–gauss–bonnet gravity with nonlinear electrodynamics: Entropy, energy emission, quasinormal modes and deflection angle, Symmetry, 13 (6), art. no. 944, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    78. Saurabh, K., Jusufi, K. Imprints of dark matter on black hole shadows using spherical accretions, European Physical Journal C, 81 (6), art. no. 490, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    79. Hegde, K., Kumara, A.N., Rizwan, C.L.A., Ali, M.S., Ajith, K.M. Null geodesics and thermodynamic phase transition of four-dimensional Gauss–Bonnet AdS black hole, Annals of Physics, 429, art. no. 168461, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    80. Yang, H. Relating black hole shadow to quasinormal modes for rotating black holes, Physical Review D, 103 (8), art. no. 084010, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    81. Jafarzade, K., Kord Zangeneh, M., Lobo, F.N. Shadow, deflection angle and quasinormal modes of Born-Infeld charged black holes, Journal of Cosmology and Astroparticle Physics, 2021 (4), art. no. 008, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    82. Debnath, U. Motion and collision of particles near Plebanski-Demianski black hole: Shadow and gravitational lensing, Chinese Journal of Physics, 70, pp. 213-231, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    83. Hendi, S.H., Sajadi, S.N., Khademi, M. Physical properties of a regular rotating black hole: Thermodynamics, stability, and quasinormal modes, Physical Review D, 103 (6), art. no. 064016, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    84. Ghosh, S.G., Kumar, R., Ul Islam, S. Parameters estimation and strong gravitational lensing of nonsingular Kerr-Sen black holes, Journal of Cosmology and Astroparticle Physics, 2021 (3), art. no. 056, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    85. Peng, Y. No short hair behaviors of ultra-compact stars, European Physical Journal C, 81 (3), art. no. 245, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    86. Jia, J., Huang, K. Perturbative deflection angle, gravitational lensing in the strong field limit and the black hole shadow, European Physical Journal C, 81 (3), art. no. 242, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    87. Siino, M. Causal concept for black hole shadows, Classical and Quantum Gravity, 38 (2), art. no. 025005, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    88. Tsukamoto, N. Gravitational lensing in the Simpson-Visser black-bounce spacetime in a strong deflection limit, Physical Review D, 103 (2), art. no. 024033, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    89. Jusufi, K., Azreg-Aïnou, M., Jamil, M., Wei, S.-W., Wu, Q., Wang, A. Quasinormal modes, quasiperiodic oscillations, and the shadow of rotating regular black holes in nonminimally coupled Einstein-Yang-Mills theory, Physical Review D, 103 (2), art. no. 024013, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    90. 90. Singh, D.V., Shukla, A., Upadhyay, S, Quasinormal modes, shadow and thermodynamics of black holes coupled with nonlinear electrodynamics and cloud ofstrings, Annals of Physics, 447, art. no. 169157, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    91. 91. Kuang, X.-M., Övgün, A., Strong gravitational lensing and shadow constraint from M87* of slowly rotating Kerr-like black hole, Annals of Physics, 447, art. no. 169147, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    92. 92. Campos, J.A.V., Anacleto, M.A., Brito, F.A., Passos, E., Quasinormal modes and shadow of noncommutative black hole, Scientific Reports, 12 (1), art. no. 8516, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    93. Ghosh, S., Bhattacharyya, A., Analytical study of gravitational lensing in Kerr-Newman black-bounce spacetime, Journal of Cosmology and Astroparticle Physics, 2022 (11), art. no. 006, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    94. Ma, C., Zhang, Y., Lin, Z.-W., The existence and stability of the photon spheres and time-like circular orbits in the spacetime of magnetic Gauss–Bonnet black hole, Canadian Journal of Physics, 100 (11), pp. 485-492, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    95. Hou, Y., Zhang, Z., Yan, H., Guo, M., Chen, B., Image of a Kerr-Melvin black hole with a thin accretion disk, Physical Review D, 106 (6), art. no. 064058, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    96. Feng, Y., Nie, W., The Correspondence Between Shadow and the Test Field in a Einstein-Euler-Heisenberg Black Hole, International Journal of Theoretical Physics, 61 (9), art. no. 223, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    97. Chen, C.-Y., Chiang, H.-W., Tsao, J.-S., Eikonal quasinormal modes and photon orbits of deformed Schwarzschild black holes, Physical Review D, 106 (4), art. no. 044068, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    98. Liu, T.-T., Zhang, H.-X., Feng, Y.-H., Deng, J.-B., Hu, X.-R., Double shadow of a 4D Einstein-Gauss-Bonnet black hole and the connection between them with quasinormal modes, Modern Physics Letters A, 37 (24), art. no. 2250154, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    99. Hod, S.,Do the Einstein-matter field equations always predict the existence of light rings in black-hole spacetimes?,European Physical Journal C, 82 (8), art. no. 663, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    100. Tsukamoto, N., Retrolensing by two photon spheres of a black-bounce spacetime, Physical Review D, 105 (8), art. no. 084036, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    101. Kudo, R., Asada, H., Nondivergent deflection of light around a photon sphere of a compact object, Physical Review D, 105 (8), art. no. 084014, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    102. Jusufi, K., Azreg-Aïnou, M., Jamil, M., Wu, Q., Equatorial and Polar Quasinormal Modes and Quasiperiodic Oscillations of Quantum Deformed Kerr Black Hole, Universe, 8 (4), art. no. 210, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    103. Jusufi, K., Azreg-Aïnou, M., Jamil, M., Zhu, T.,Constraining the generalized uncertainty principle through black hole shadow, S2 star orbit, and quasiperiodic oscillations, International Journal of Geometric Methods in Modern Physics, 19 (5), art. no. 2250068, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    104. Jafarzade, K., Zangeneh, M.K., Lobo, F.S.N., Optical Features of AdS Black Holes in the Novel 4D Einstein-Gauss-Bonnet Gravity Coupled to Nonlinear Electrodynamics, Universe, 8 (3), art. no. 182, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    105. Raffaelli, B.,Hidden conformal symmetry on the black hole photon sphere, Journal of High Energy Physics, 2022 (3), art. no. 125, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    106. Rayimbaev, J., Majeed, B., Jamil, M., Jusufi, K., Wang, A., Quasiperiodic oscillations, quasinormal modes and shadows of Bardeen–Kiselev Black Holes, Physics of the Dark Universe, 35, art. no. 100930, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    107. Ali, M.S., Kauhsal, S., Gravitational lensing for stationary axisymmetric black holes in Eddington-inspired Born-Infeld gravity, Physical Review D, 105 (2), art. no. 024062, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    108. Tsukamoto, N., Retrolensing by light rays slightly inside and outside of a photon sphere around a Reissner-Nordström naked singularity, Physical Review D, 105 (2), art. no. 024009, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
    109. Molla, N.U., Debnath, U., Gravitational Lensing of Acoustic Charged Black Holes, Astrophysical Journal 947(1),14, 2023. - 2023 - в издания, индексирани в Scopus или Web of Science
    110. Hod, S., Extremal black holes have external light rings, Physical Review D 107(2),024028, 2023. - 2023 - в издания, индексирани в Scopus или Web of Science
    111. Chowdhuri, A., Ghosh, S., Bhattacharyya, A., A review on analytical studies in gravitational lensing, Frontiers in Physics, 11,1113909, 2023. - 2023 - в издания, индексирани в Scopus или Web of Science
    112. Kruglov, S.I., 4D Einstein–Gauss–Bonnet Gravity Coupled to Modified Logarithmic Nonlinear Electrodynamics, Universe 9(1),24, 2023. - 2023 - в издания, индексирани в Scopus или Web of Science
    113. Du, Y.-Z., Li, H.-F., Liu, F., Zhang, L.-C., Photon orbits and phase transition for non-linear charged anti-de Sitter black holes, Journal of High Energy Physics 2023(1),137, 2023. - 2023 - в издания, индексирани в Scopus или Web of Science
    114. Hod, S. Lower bound on the radii of light rings in traceless black-hole spacetimes (2023) Journal of High Energy Physics , 2023 (12), art. no. 178 - 2023 - в издания, индексирани в Scopus или Web of Science
    115. 115. Liu, G., Peng, Y., No long hair behaviors of ultra-compact objects, (2023) European Physical Journal C, 83 (12), art. no. 1102. - 2023 - в издания, индексирани в Scopus или Web of Science
    116. Broderick, A.E., Salehi, K., Georgiev, B., Shadow Implications: What Does Measuring the Photon Ring Imply for Gravity?, (2023), Astrophysical Journal, 958 (2), art. no. 114. - 2023 - в издания, индексирани в Scopus или Web of Science
    117. Mandal, S., Weak deflection angle, Hawking radiation, greybody bound and shadow cast for static black hole in the framework of f(R)gravity, (2023), Physics of the Dark Universe, 42, art. no. 101374. - 2023 - в издания, индексирани в Scopus или Web of Science
    118. Zeng, W., Ling, Y., Jiang, Q.-Q., Li, G.-P., Accretion disk for regular black holes with sub-Planckian curvature, (2023), Physical Review D, 108 (10), art. no. 104072. - 2023 - в издания, индексирани в Scopus или Web of Science
    119. Chen, C.-Y., Chen, Y.-J., Ho, M.-Y., Tseng, Y.-H., A novel test of gravity via black hole eikonal correspondence, (2023), Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 845, art. no. 138153. - 2023 - в издания, индексирани в Scopus или Web of Science
    120. Torres, T., From Black Hole Spectral Instability to Stable Observables, (2023), Physical Review Letters, 131 (11), art. no. 111401. - 2023 - в издания, индексирани в Scopus или Web of Science
    121. Zhou, S., Chen, M., Jia, J., Effect of electric interaction on the deflection and gravitational lensing in the strong field limit, (2023), European Physical Journal C, 83 (9), art. no. 883. - 2023 - в издания, индексирани в Scopus или Web of Science
    122. Zeng, W., Ling, Y., Jiang, Q.-Q., Astrophysical observables for regular black holes with sub-Planckian curvature* *Supported in part by the Natural ScienceFoundation of China (11875053, 12035016). It is also supported by the Beijing Natural Science Foundation (1222031), andthe Sichuan Youth Science and Technology Innovation Research Team with (21CXTD0038), Central Government Funds ofGuiding Local Scientific and Technological Development for Sichuan Province with (2021ZYD0032), (2023), Chinese Physics C, 47 (8), art. no. 085103. - 2023 - в издания, индексирани в Scopus или Web of Science
    123. Sun, Q., Li, Q., Zhang, Y., Li, Q.-Q., Quasinormal modes, Hawking radiation and absorption of the massless scalar field for Bardeen black hole surrounded byperfect fluid dark matter, (2023), Modern Physics Letters A, 38 (22-23), art. no. 2350102. 124. Uniyal, A., Kanzi, S., Sakallı, İ., Some observable physical properties of the higher - 2023 - в издания, индексирани в Scopus или Web of Science
    124. Uniyal, A., Kanzi, S., Sakallı, İ., Some observable physical properties of the higher dimensional dS/AdS black holes in Einstein-bumblebee gravity theory, (2023), European Physical Journal C, 83 (7), art. no. 668. - 2023 - в издания, индексирани в Scopus или Web of Science
    125. Peng, Y., The existence of null circular geodesics outside extremal spherically symmetric asymptotically flat hairy black holes, (2023), European Physical Journal C, 83 (4), art. no. 339. - 2023 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание