Autors: Hensel S., Marinov B. M., Sprich F., Ganev, B. T.
Title: Image-Based Automated Hit Detection and Score Calculation on a Steel Dartboard
Keywords: darts ,Hough Transformation, Image processing, straight line detection

Abstract: This paper presents an approach for implementing an automated hit detection and score calculation system for a steel dartboard using a standard webcam. First, the rectilinear field separations of the dartboard are described mathematically by means of line slopes and are than stored. These slopes serve as a basis for later score calculation. In addition, thrown darts have to be detected and the pixel at which the dart cuts the dartboard has to be determined. When this information is known, a comparison is made using the line slopes, allowing the field number of the hit to be detected. The decision for single, double or triple hit is made by evaluating the defined colors on the dartboard. All these functions are then packaged in a Matlab GUI.


  1. [1] Encyclopedia Brittanica, Micropedia, 15 ed., vol. 3, Chicago: Helen Hemingway Benton, 1983, p. 385. [2] K. Selkirk, "Re-designing the dartboard,," Math. Gazette, vol. 60, pp. 171- 178, 1976. [3] D. Singmaster, "Arranging a dartboard," IMA Bulletin, vol. 16, pp. 93-97, 1980. [4] "Innovation an der Scheibe. Informatiker entwickeln Kamera-basierte Punktewertung für professionelle Steeldartscheiben," Universität Jena, 31 März 2015. [Online]. Available: https: //www4.unijena. de/Forschungsmeldungen/FM150331_Dart.html.. [5] A. Patel and M. Ehrenberg, "The Design and Implementation of an Automated Dartboard -Final Project Report," MIT, 2005. [6] R. O. Duda and P. E. Hart, "Use of the Hough Transformation to Detect Lines and Curves in Pictures," Comm. ACM, vol. 15, p. 11–15, January, 1972. [7] J. Canny, "A Computational Approach to Edge Detection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 6, p. 679–698, 1986.


2nd Balkan Junior Conference on Lighting, Balkan Light Junior 2019, 2019, Bulgaria, DOI: 10.1109/BLJ.2019.8883659

Цитирания (Citation/s):
1. Hsia S-, Wang S-, Cheng W-, Chang C-. Intelligent blowgun game scoring recognition system based on computer vision. IEEE Access. 2021;9:73703-12.DOI 10.1109/ACCESS.2021.3081457 - 2021 - в издания, индексирани в Scopus или Web of Science

Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus