Autors: Neshov, N. N., Manolova, A. H. Title: Pain detection from facial characteristics using supervised descent method Keywords: pain detection, pain intensity estimation, supervised descen Abstract: In this paper we propose an algorithm for both automatic pain recognition (i.e. pain/no pain presence in human) and continuous pain intensity estimation based on facial expression analysis. To locate specific landmarks in the face we used Supervised Descent Method (SDM) and then extract feature vectors using Scale Invariant Feature Transform (SIFT). For the recognition task we build a classier based on Support Vector Machines (SVM) and for the continuous pain intensity estimation task we trained linear regressor. The experiments with patients with shoulder pain show very good recognition rate (more than 95.7%). For the pain intensity estimation we reached an average Mean Squared Error of 1.28 and Correlation coefficient of 0.59. The recorded results demonstrate performance that exceeds state-of-the-art results on a standard data set. References Issue
Copyright IEEE |
Цитирания (Citation/s):
1. Sun, Y., Shan, C., Tan, T, Tong, T, Wang, W, Pourtaherian, A, De With, P.H.N., Detecting discomfort in infants through facial expressions, Physiological Measurement 40(11),115006 - 2019 - в издания, индексирани в Scopus или Web of Science
2. Menchetti, G., Chen, Z., Wilkie, D.J., Ansari, R., Yardimci, Y., Cetin, A.E., Pain detection from facial videos using two-stage deep learning, GlobalSIP 2019 - 7th IEEE Global Conference on Signal and Information Processing, Proceedings 8969274 - 2019 - в издания, индексирани в Scopus или Web of Science
3. Wu, D., Chen, J., Liu, H., Zhang, P., Yu, Z., Chen, H., Chen, S., Weld penetration in situ prediction from keyhole dynamic behavior under time-varying VPPAW pools via the OS-ELM model, International Journal of Advanced Manufacturing Technology 104(9-12), 2019, pp. 3929-3941 - 2019 - в издания, индексирани в Scopus или Web of Science
4. Slakkham, B., Bhattarakosol, P., A Monitoring and Analyzing Pain System for Postoperative Brain Surgery Patients Based Facial Detection, IEEE Region 10 Annual International Conference, pp. 377-382 - 2019 - в издания, индексирани в Scopus или Web of Science
5. Lee, J.-S., Wang, C.-W., Facial pain intensity estimation for ICU patient with partial occlusion coming from treatment, 3rd International Conference on Biological Information and Biomedical Engineering, BIBE 2019 pp. 106-109 - 2019 - в издания, индексирани в Scopus или Web of Science
6. Thuseethan, S., Rajasegarar, S., Yearwood, J., Deep hybrid spatiotemporal networks for continuous pain intensity estimation, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, 11955 LNCS, pp. 449-461 - 2019 - в издания, индексирани в Scopus или Web of Science
7. Huang, D., Xia, Z., Mwesigye, J., Feng, X., Pain-attentive network: a deep spatio-temporal attention model for pain estimation, Multimedia Tools and Applications 79(37-38), pp. 28329-28354 - 2020 - в издания, индексирани в Scopus или Web of Science
8. P. Werner, D. Lopez-Martinez, S. Walter, A. Al-Hamadi, S. Gruss and R. Picard, "Automatic Recognition Methods Supporting Pain Assessment: A Survey," in IEEE Transactions on Affective Computing, doi: 10.1109/TAFFC.2019.2946774. - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
9. R. L., Pau, Towards robust neural models for fine-grained image recognition, Centro de Visión por Computador; 1st edition (March 1, 2019), ISBN: 9788449087028 - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
10. Semwal, A., & Londhe, N. D. (2021). Computer aided pain detection and intensity estimation using compact CNN based fusion network. Applied Soft Computing, 112, 107780. - 2021 - в издания, индексирани в Scopus или Web of Science
11. Semwal, A., & Londhe, N. D. (2021). MVFNet: A multi-view fusion network for pain intensity assessment in unconstrained environment. Biomedical Signal Processing and Control, 67, 102537. - 2021 - в издания, индексирани в Scopus или Web of Science
12. Huang, Y., Qing, L., Xu, S., Wang, L., & Peng, Y. (2021). HybNet: a hybrid network structure for pain intensity estimation. The Visual Computer, 1-12. - 2021 - в издания, индексирани в Scopus или Web of Science
13. Xin, X., Li, X., Yang, S., Lin, X., & Zheng, X. (2021). Pain expression assessment based on a locality and identity aware network. IET Image Processing, 15(12), 2948-2958. - 2021 - в издания, индексирани в Scopus или Web of Science
14. Semwal, A., & Londhe, N. D. (2021, January). ECCNet: An Ensemble of Compact Convolution Neural Network for Pain Severity Assessment from Face images. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 761-766). IEEE. - 2021 - в издания, индексирани в Scopus или Web of Science
15. Kharghanian, R., Peiravi, A., Moradi, F., & Iosifidis, A. (2021). Pain detection using batch normalized discriminant restricted Boltzmann machine layers. Journal of Visual Communication and Image Representation, 76, 103062. - 2021 - в издания, индексирани в Scopus или Web of Science
16. Semwal, A., & Londhe, N. D. (2021, January). S-PANET: A Shallow Convolutional Neural Network for Pain Severity Assessment in Uncontrolled Environment. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0800-0806). IEEE. - 2021 - в издания, индексирани в Scopus или Web of Science
17. Huang, Y., Qing, L., Xu, S., Wang, L., & Peng, Y. (2022). HybNet: a hybrid network structure for pain intensity estimation. The Visual Computer, 38(3), 871-882. - 2022 - в издания, индексирани в Scopus или Web of Science
18. Shanataram, P. M., & Dhansing, P. H. (2022). Automatic pain recognition techniques: a state-of-the-art review. South Asian Journal of Engineering and Technology, 12(3), 43-53. - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
19. Wu, C. L., Liu, S. F., Yu, T. L., Shih, S. J., Chang, C. H., Mao, S. F. Y., ... & Chao, W. C. (2022). Deep Learning-Based Pain Classifier Based on the Facial Expression in Critically Ill Patients. Frontiers in Medicine, 9. - 2022 - в издания, индексирани в Scopus или Web of Science
20. Rodriguez, P., Cucurull, G., Gonzalez, J., Gonfaus, J.M., Nasrollahi, K., Moeslund, T.B., Roca, F.X. Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification (2022) IEEE Transactions on Cybernetics, 52 (5), pp. 3314-3324. - 2022 - в издания, индексирани в Scopus или Web of Science
21. Huang, D., Xia, Z., Li, L., Ma, Y. Pain estimation with integrating global-wise and region-wise convolutional networks (2023) IET Image Processing, 17 (3), pp. 637-648. - 2023 - в издания, индексирани в Scopus или Web of Science
22. Yuan, X., Zhang, S., Zhao, C., He, X., Ouyang, B., Yang, S. Pain Intensity Recognition from Masked Facial Expressions using Swin-Transformer (2022) 2022 IEEE International Conference on Robotics and Biomimetics, ROBIO 2022, pp. 723-728. - 2022 - в издания, индексирани в Scopus или Web of Science
23. Chen, Z., Ansari, R., Wilkie, D.J. Learning Pain from Action Unit Combinations: A Weakly Supervised Approach via Multiple Instance Learning (2022) IEEE Transactions on Affective Computing, 13 (1), pp. 135-146. - 2022 - в издания, индексирани в Scopus или Web of Science
24. Hassan, T., Seus, D., Wollenberg, J., Weitz, K., Kunz, M., Lautenbacher, S., Garbas, J.-U., Schmid, U. Automatic Detection of Pain from Facial Expressions: A Survey (2021) IEEE Transactions on Pattern Analysis and Machine Intelligence, 43 (6), art. no. 8928510, pp. 1815-1831. - 2021 - в издания, индексирани в Scopus или Web of Science
25. J. Egede, M. Valstar and B. Martinez, "Fusing Deep Learned and Hand-Crafted Features of Appearance, Shape, and Dynamics for Automatic Pain Estimation," 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 2017, pp. 689-696, doi: 10.1109/FG.2017.87. - 2017 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
26. S. Jaiswal, J. Egede and M. Valstar, "Deep Learned Cumulative Attribute Regression," 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi'an, China, 2018, pp. 715-722, doi: 10.1109/FG.2018.00113. - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
27. J. Wang, H. Sun, Pain intensity estimation using deep spatiotemporal and handcrafted features, IEICE Trans. Inf. Syst. E101D (6) (2018) 1572–1580, doi:10.1587/transinf.2017EDP7318. - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
28. Ordun, C., Cha, A.N., Raff, E., Gaskin, B., Hanson, A., Rule, M., Purushotham, S. and Gulley, J.L., 2022. Intelligent Sight and Sound: A Chronic Cancer Pain Dataset. arXiv preprint arXiv:2204.04214. - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
29. Egede, Joy O., and Michel Valstar. "Cumulative attributes for pain intensity estimation." In Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 146-153. 2017. - 2017 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
30. Rupenga, Moses, and Hima B. Vadapalli. "Automatic spontaneous pain recognition using supervised classification learning algorithms." In 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), pp. 1-6. - 2016 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
31. Whitehill, Jacob Richard. "Automatic Pain Estimation System." PhD diss., Worcester Polytechnic Institute, 2022. - 2022 - в издания, индексирани в Scopus или Web of Science
32. Hiremath, Gowri, Ananya A. Bangera, Subhiksha Shetty, Sushmitha Mendon, B. N. Deeksha, Anush Bekal, and Chandra Singh. "Prediction of Chronic Pain Onset in Patients Experiencing Tonic Pain: A Survey." In International Conference on VLSI, Signal Processing, Power Electronics, IoT, Communication and Embedded Systems, pp. 321-330. Singapore: Springer Nature Singapore, 2022. - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
33. Kim, H., 2021. Deep-Learning-Based Real-Time Monitoring of Laser Keyhole Welding Processes. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
34. Seuß, Dominik. "Exploiting Domain-specific Knowledge for Classifier Learning: AU-based Facial Expression Analysis and Emotion Recognition." PhD diss., Otto-Friedrich-Universität Bamberg, Fakultät Wirtschaftsinformatik und Angewandte Informatik, 2021. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
35. Mali, S.K.R., chaithanya Janapati, K. and Katroju, R., Automatic pain intensity detection by analyzing facial expressions caused due to pain. - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
36. Olugbade, T.A., 2018. Automatic Monitoring of Physical Activity Related Affective States for Chronic Pain Rehabilitation (Doctoral dissertation, UCL (University College London)). - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
37. Zebarjadi, N. and Alikhani, I., 2017, February. Static and dynamic approaches for pain intensity estimation using facial expressions. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies, Vol 5: HealthINF. SCITEPRESS Science And Technology Publications. - 2017 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
38. Mohan, Y. and Tripathi, V., 2018. Comparative analysis of facial expression detection techniques based on neural network. Int. J. Eng. Technol. - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science