Autors: Neshov, N. N., Manolova, A. H.
Title: Pain detection from facial characteristics using supervised descent method
Keywords: pain detection, pain intensity estimation, supervised descent method (SDM), support vector machines (SVM), linear regression

Abstract: In this paper we propose an algorithm for both automatic pain recognition (i.e. pain/no pain presence in human) and continuous pain intensity estimation based on facial expression analysis. To locate specific landmarks in the face we used Supervised Descent Method (SDM) and then extract feature vectors using Scale Invariant Feature Transform (SIFT). For the recognition task we build a classier based on Support Vector Machines (SVM) and for the continuous pain intensity estimation task we trained linear regressor. The experiments with patients with shoulder pain show very good recognition rate (more than 95.7%). For the pain intensity estimation we reached an average Mean Squared Error of 1.28 and Correlation coefficient of 0.59. The recorded results demonstrate performance that exceeds state-of-the-art results on a standard data set.

References

    Issue

    2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 1, pp. 251-256, 2015, Poland, IEEE, DOI 10.1109/IDAACS.2015.7340738

    Copyright IEEE

    Цитирания (Citation/s):
    1. Sun, Y., Shan, C., Tan, T, Tong, T, Wang, W, Pourtaherian, A, De With, P.H.N., Detecting discomfort in infants through facial expressions, Physiological Measurement 40(11),115006 - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Menchetti, G., Chen, Z., Wilkie, D.J., Ansari, R., Yardimci, Y., Cetin, A.E., Pain detection from facial videos using two-stage deep learning, GlobalSIP 2019 - 7th IEEE Global Conference on Signal and Information Processing, Proceedings 8969274 - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Wu, D., Chen, J., Liu, H., Zhang, P., Yu, Z., Chen, H., Chen, S., Weld penetration in situ prediction from keyhole dynamic behavior under time-varying VPPAW pools via the OS-ELM model, International Journal of Advanced Manufacturing Technology 104(9-12), 2019, pp. 3929-3941 - 2019 - в издания, индексирани в Scopus или Web of Science
    4. Slakkham, B., Bhattarakosol, P., A Monitoring and Analyzing Pain System for Postoperative Brain Surgery Patients Based Facial Detection, IEEE Region 10 Annual International Conference, pp. 377-382 - 2019 - в издания, индексирани в Scopus или Web of Science
    5. Lee, J.-S., Wang, C.-W., Facial pain intensity estimation for ICU patient with partial occlusion coming from treatment, 3rd International Conference on Biological Information and Biomedical Engineering, BIBE 2019 pp. 106-109 - 2019 - в издания, индексирани в Scopus или Web of Science
    6. Thuseethan, S., Rajasegarar, S., Yearwood, J., Deep hybrid spatiotemporal networks for continuous pain intensity estimation, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, 11955 LNCS, pp. 449-461 - 2019 - в издания, индексирани в Scopus или Web of Science
    7. Huang, D., Xia, Z., Mwesigye, J., Feng, X., Pain-attentive network: a deep spatio-temporal attention model for pain estimation, Multimedia Tools and Applications 79(37-38), pp. 28329-28354 - 2020 - в издания, индексирани в Scopus или Web of Science
    8. P. Werner, D. Lopez-Martinez, S. Walter, A. Al-Hamadi, S. Gruss and R. Picard, "Automatic Recognition Methods Supporting Pain Assessment: A Survey," in IEEE Transactions on Affective Computing, doi: 10.1109/TAFFC.2019.2946774. - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    9. R. L., Pau, Towards robust neural models for fine-grained image recognition, Centro de Visión por Computador; 1st edition (March 1, 2019), ISBN: 9788449087028 - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    10. Semwal, A., & Londhe, N. D. (2021). Computer aided pain detection and intensity estimation using compact CNN based fusion network. Applied Soft Computing, 112, 107780. - 2021 - в издания, индексирани в Scopus или Web of Science
    11. Semwal, A., & Londhe, N. D. (2021). MVFNet: A multi-view fusion network for pain intensity assessment in unconstrained environment. Biomedical Signal Processing and Control, 67, 102537. - 2021 - в издания, индексирани в Scopus или Web of Science
    12. Huang, Y., Qing, L., Xu, S., Wang, L., & Peng, Y. (2021). HybNet: a hybrid network structure for pain intensity estimation. The Visual Computer, 1-12. - 2021 - в издания, индексирани в Scopus или Web of Science
    13. Xin, X., Li, X., Yang, S., Lin, X., & Zheng, X. (2021). Pain expression assessment based on a locality and identity aware network. IET Image Processing, 15(12), 2948-2958. - 2021 - в издания, индексирани в Scopus или Web of Science
    14. Semwal, A., & Londhe, N. D. (2021, January). ECCNet: An Ensemble of Compact Convolution Neural Network for Pain Severity Assessment from Face images. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 761-766). IEEE. - 2021 - в издания, индексирани в Scopus или Web of Science
    15. Kharghanian, R., Peiravi, A., Moradi, F., & Iosifidis, A. (2021). Pain detection using batch normalized discriminant restricted Boltzmann machine layers. Journal of Visual Communication and Image Representation, 76, 103062. - 2021 - в издания, индексирани в Scopus или Web of Science
    16. Semwal, A., & Londhe, N. D. (2021, January). S-PANET: A Shallow Convolutional Neural Network for Pain Severity Assessment in Uncontrolled Environment. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0800-0806). IEEE. - 2021 - в издания, индексирани в Scopus или Web of Science

    Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science