Autors: Boumbarov, O. L., Velchev, Y. S., Sokolov S.
Title: ECG personal identification in subspaces using radial basis neural networks
Keywords: ECG personal identification, HMM, LDA, Neural networks, PCA

Abstract: In this paper an approach for personal biometric identification is presented based on extraction of ECG features and classification with RBFNN. We perform denoising and segmentation on the input signal, after which we realize dimensionality reduction and feature extraction based on PCA transform. The separability of the selected features is improved by applying LDA. The final stage of the proposed approach is classification and recognition of the extracted features with classifier score fusion

References

    Issue

    2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 446-451, 2009, Italy, IEEE, DOI 10.1109/IDAACS.2009.5342942

    Copyright IEEE

    Цитирания (Citation/s):
    1. Alotaiby, T. N., Alhakbani, A., Alwhibi, N., Alotaibi, G., Alshebeili, S.A., "Locality Sensitive Hashing for ECG-based Subject Identification", 2019 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTING TECHNOLOGIES AND APPLICATIONS (ICECTA), ISBN: 978-1-7281-5532-6 - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Wu, S.C., Chen, P.T. , Swindlehurst, A.L., Hung, P.L., "Cancelable Biometric Recognition With ECGs: Subspace-Based", IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY Volume: 14 Issue: 5 Pages: 1323-1336 DOI: 10.1109/TIFS.2018.2876838 - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Melgarejo-Meseguer, F.M., Gimeno-Blanes, F.J., Salar-Alcaraz, M.E., Gimeno-Blanes, J.R., Martinez-Sanchez, J., Garcia-Alberola, A., Rojo-Alvarez, J.L., "Electrocardiographic Fragmented Activity (I): Physiological Meaning of Multivariate Signal Decompositions", APPLIED SCIENCES-BASEL Volume: 9 Issue: 17 Article Number: 3566 DOI: 10.3390/app9173566 - 2019 - в издания, индексирани в Scopus или Web of Science
    4. Srivastva, R., Singh, Y.N., " ECG analysis for human recognition using non-fiducial methods", IET BIOMETRICS Volume: 8 Issue: 5 Pages: 295-305 DOI: 10.1049/iet-bmt.2018.5093 - 2019 - в издания, индексирани в Scopus или Web of Science
    5. Li, Y.Z., Pang, Y.W., Wang, K.Q., Li, X.L., "Toward improving ECG biometric identification using cascaded convolutional neural networks", NEUROCOMPUTING Volume: 391 Pages: 83-95, ISSN: 0925-2312, eISSN: 1872-8286 - 2020 - в издания, индексирани в Scopus или Web of Science
    6. Priesnitz, W., Fred, A.L.N., "Multimbiometric Authentication using ECG", REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS Volume: 10 Issue: 4 Pages: 5741-5746 DOI: 10.7198/geintec.v10i4.1455 - 2020 - в издания, индексирани в Scopus или Web of Science
    7. Patro, K.K., Jayamanmadha Rao, M., Rajesh Kumar, P., "Swarm based intelligent feature optimization technique for ECG based biometric human recognition", International Journal of Engineering and Advanced Technology, 8 (5 Special Issue 3), 2019, pp. 172-178, DOI: 10.35940/ijeat.E1041.0785S319 - 2019 - в издания, индексирани в Scopus или Web of Science
    8. Uwaechia, A.N., Ramli, D.A., "A Comprehensive Survey on ECG Signals as New Biometric Modality for Human Authentication: Recent Advances and Future Challenges", (2021) IEEE Access, 9, art. no. 9475452, pp. 97760-97802, DOI: 10.1109/ACCESS.2021.3095248 - 2021 - в издания, индексирани в Scopus или Web of Science
    9. Fainzilberg L.S., "Phase Portrait of Electrocardiogram as a Means Of Biometry", (2022) Cybernetics and Systems Analysis, DOI: 10.1007/s10559-022-00479-6 - 2022 - в издания, индексирани в Scopus или Web of Science
    10. Nezamabadi K., Sardaripour N., Haghi B., Forouzanfar M., "Unsupervised ECG Analysis: A Review", (2023) IEEE Reviews in Biomedical Engineering, 16, pp. 208 - 224, DOI: 10.1109/RBME.2022.3154893 - 2023 - в издания, индексирани в Scopus или Web of Science
    11. Pradhan B.K., Neelappu B.C., Sivaraman J., Kim D., Pal K., "A Review on the Applications of Time-Frequency Methods in ECG Analysis", (2023) Journal of Healthcare Engineering, 2023, art. no. 3145483, DOI: 10.1155/2023/3145483 - 2023 - в издания, индексирани в Scopus или Web of Science
    12. Asadianfam S., Talebi M.J., Nikougoftar E., "ECG-based authentication systems: a comprehensive and systematic review", (2023) Multimedia Tools and Applications, DOI: 10.1007/s11042-023-16506-3 - 2023 - в издания, индексирани в Scopus или Web of Science
    13. Patro K.K., Allam J.P., Chapa B.P., Kumari P.L., Hammad M., "Artificial intelligence-based biometric authentication using ECG signal", (2023) Artificial Intelligence for Biometrics and Cybersecurity: Technology and applications, pp. 123 - 147, ISBN: 978-183953548-2, 978-183953547-5 - 2023 - в издания, индексирани в Scopus или Web of Science
    14. Prakash A.J., Patro K.K., Samantray S., Pławiak P., Hammad M., "A Deep Learning Technique for Biometric Authentication Using ECG Beat Template Matching", (2023) Information (Switzerland), 14 (2), art. no. 65, DOI: 10.3390/info14020065 - 2023 - в издания, индексирани в Scopus или Web of Science
    15. Seják M., Sido J., Žahour D., "ElectroCardioGuard: Preventing patient misidentification in electrocardiogram databases through neural networks", (2023) Knowledge-Based Systems, 280, art. no. 111014, DOI: 10.1016/j.knosys.2023.111014 - 2023 - в издания, индексирани в Scopus или Web of Science

    Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science