Autors: Semov, P. T., Al-Shatri, H., Tonchev, K., Poulkov, V. K., Klein, A.
Title: Implementation of Machine Learning for Autonomic Capabilities in Self-Organizing Heterogeneous Networks
Keywords: Energy saving; Machine learning; Self-managing network; Self-organizing networks

Abstract: The 3GPP’s self-organizing networks (SONs) standards are a huge step towards the autonomic networking concept. They are the response to the increasing complexity and size of the mobile networks. This paper proposes a novel scheme for SONs. This scheme is based on machine learning techniques and additionally adopting the concept of abstraction and modularity. The implementation of these concepts in a machine learning scheme allows the usage of independent vendor and technology algorithms and reusability of the proposed approach for different optimization tasks in a network. The scheme is tested for solving an energy saving optimization problem in a heterogeneous network. The results from simulation experiments show that such an approach could be an appropriate solution for developing a full self-managing future network.



    Wireless Personal Communications, vol. 92, issue 1, pp. 149-168, 2017, Switzerland, Springer, DOI 10.1007/s11277-016-3843-2

    Copyright Springer Science+Business Media New York

    Цитирания (Citation/s):
    1. Khan, T.A., Mehmood, A., Diaz Rivera, J.J., Song, W.-C., "Machine Learning Approach for Automatic Configuration and Management of 5G Platforms", 2019 20th Asia-Pacific Network Operations and Management Symposium: Management in a Cyber-Physical World, APNOMS 2019, 2019, DOI: 10.23919/APNOMS.2019.8893119. - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Jadoon, M.A., Kim, S., "Learning-Based Relay Selection for Cooperative Networks with Space–Time Network Coding", Wireless Personal Communications, vol. 108, no. 2, pp. 907-920, 2019, DOI: 10.1007/s11277-019-06439-2. - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Rafiq, A., Mehmood, A., Khan, T.A., Abbas, K., Afaq, M., Song, W.-C., "Intent-based end-to-end network service orchestration system for multi-platforms", Sustainability (Switzerland), vol. 12, no. 7, 2020, DOI: 10.3390/su12072782. - 2020 - в издания, индексирани в Scopus или Web of Science
    4. Khan, T.A., Abbas, K., Muhammad, A., Rafiq, A., Song, W.-C., "GAN and DRL Based Intent Translation and Deep Fake Configuration Generation for Optimization", International Conference on ICT Convergence, vol. 2020-October, pp. 347-352, 2020, DOI: 10.1109/ICTC49870.2020.9289564. - 2020 - в издания, индексирани в Scopus или Web of Science
    5. Muhammad, A., Khan, T.A., Abbass, K., Song, W.-C., "An End-to-end Intelligent Network Resource Allocation in IoV: A Machine Learning Approach", IEEE Vehicular Technology Conference, vol. 2020-November, 2020, DOI: 10.1109/VTC2020-Fall49728.2020.9348842. - 2020 - в издания, индексирани в Scopus или Web of Science
    6. Huang, Y., Hu, H., Zhang, J., Zhang, J., "Foam Evolution Inspired Modeling for Staged Construction of Ultra-Dense Small Cell Networks", IEEE Access, vol. 9, pp. 35431-35438, 2021, DOI: 10.1109/ACCESS.2021.3062207. - 2021 - в издания, индексирани в Scopus или Web of Science
    7. Khan, T.A., Abbas, K., Muhammad, A., Song, W.-C., "An intent-driven closed-loop platform for 5G network service orchestration", Computers, Materials and Continua, vol. 70, no. 3, pp. 4323-4340, 2022, DOI: 10.32604/cmc.2022.017118. - 2022 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science