Autors: Dandanov, N. G., Al-Shatri, H., Klein, A., Poulkov, V. K. Title: Dynamic Self-Optimization of the Antenna Tilt for Best Trade-off Between Coverage and Capacity in Mobile Networks Keywords: Antenna tilt; Capacity; Coverage; Machine learning; Mobile n Abstract: One major factor influencing the coverage and capacity in mobile networks is related to the configuration of the antennas and especially the antenna tilt angle. By utilizing antenna tilt, signal reception within a cell can be improved and interference radiation towards other cells can be effectively reduced, which leads to a higher signal-to-interference-plus-noise ratio received by the users and increased sum data rate in the network. In this work, a method for capacity and coverage optimization using base station antenna electrical tilt in mobile networks is proposed. It has the potential to improve network performance while reducing operational costs and complexity, and to offer better quality of experience for the mobile users. Our solution is based on the application of reinforcement learning and the simulation results show that the algorithm improves significantly the overall data rate of the network, as compared to no antenna tilt optimization. The analysis in this paper .. References Issue
Copyright Springer Science+Business Media New York |
Цитирания (Citation/s):
1. Khan, M., Alhumaima, R.S., Al-Raweshidy, H.S., "QoS-Aware Dynamic RRH Allocation in a Self-Optimized Cloud Radio Access Network With RRH Proximity Constraint", IEEE Transactions on Network and Service Management, vol. 14, no. 3, pp. 730-744, 2017, DOI: 10.1109/TNSM.2017.2719399. - 2017 - в издания, индексирани в Scopus или Web of Science
2. Khan, M., Fakhri, Z.H., Al-Raweshidy, H.S., "Semistatic Cell Differentiation and Integration with Dynamic BBU-RRH Mapping in Cloud Radio Access Network", IEEE Transactions on Network and Service Management, vol. 15, no. 1, pp. 289-303, 2018, DOI: 10.1109/TNSM.2017.2771622. - 2018 - в издания, индексирани в Scopus или Web of Science
3. Parera, C., Redondi, A.E.C., Cesana, M., Liao, Q., Ewe, L., Tatino, C., "Transferring knowledge for tilt-dependent radio map prediction", IEEE Wireless Communications and Networking Conference, WCNC, vol. 2018-April, pp. 1-6, 2018, DOI: 10.1109/WCNC.2018.8377359. - 2018 - в издания, индексирани в Scopus или Web of Science
4. Qin, Y., Huangfu, W., Zhang, H., Liu, W., Long, K., "Accelerated Coverage Optimization with Particle Swarm in the Quotient Space Characterizing Antenna Azimuths of Cellular Networks", IEEE Access, vol. 7, pp. 86252-86264, 2019, DOI: 10.1109/ACCESS.2019.2925099. - 2019 - в издания, индексирани в Scopus или Web of Science
5. Qureshi, M.N., Tiwana, M.I., Haddad, M., "Distributed self optimization techniques for heterogeneous network environments using active antenna tilt systems", Telecommunication Systems, vol. 70, no. 3, pp. 379-389, 2019, DOI: 10.1007/s11235-018-0494-5. - 2019 - в издания, индексирани в Scopus или Web of Science
6. Yanyun, C., Alexis, H., Hui, X., Xingxiu, Y., "Coverage and Capacity Optimization for 4G LTE Networks Using Differential Evolution", Proceedings of 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems, CCIS 2018, pp. 640-645, 2018, DOI: 10.1109/CCIS.2018.8691195. - 2018 - в издания, индексирани в Scopus или Web of Science
7. Shakeeb, A.-R., Sayidmarie, K.H., "A cellular base station antenna configuration for variable coverage", International Journal of Electrical and Computer Engineering, vol. 9, no. 3, pp. 1887-1893, 2019, DOI: 10.11591/ijece.v9i3.pp1887-1893. - 2019 - в издания, индексирани в Scopus или Web of Science
8. Liu, Y., Huangfu, W., Zhang, H., Long, K., "An efficient stochastic gradient descent algorithm to maximize the coverage of cellular networks", IEEE Transactions on Wireless Communications, vol. 18, no. 7, pp. 3424-3436, 2019, DOI: 10.1109/TWC.2019.2914040. - 2019 - в издания, индексирани в Scopus или Web of Science
9. Erricolo, D., Chen, P.-Y., Rozhkova, A., Torabi, E., Bagci, H., Shamim, A., Zhang, X., "Machine learning in electromagnetics: A review and some perspectives for future research", Proceedings of the 2019 21st International Conference on Electromagnetics in Advanced Applications, ICEAA 2019, pp. 1377-1380, 2019, DOI: 10.1109/ICEAA.2019.8879110. - 2019 - в издания, индексирани в Scopus или Web of Science
10. Ahmad Hashemi, S., Farrokhi, H., "Mobility robustness optimization and load balancing in self-organized cellular networks: Towards cognitive network management", Journal of Intelligent and Fuzzy Systems, vol. 38, no. 3, pp. 3285-3300, 2020, DOI: 10.3233/JIFS-191558. - 2020 - в издания, индексирани в Scopus или Web of Science
11. Shah, B., Dalwadi, G., Pandey, A., Shah, H., Kothari, N., "Online CQI-based optimization using k-means and machine learning approach under sparse system knowledge", International Journal of Communication Systems, vol. 33, no. 3, 2020, DOI: 10.1002/dac.4200. - 2020 - в издания, индексирани в Scopus или Web of Science
12. Rebato, M., Rose, L., Zorzi, M., "Tilt Angle Optimization in Dynamic TDD mmWave Cellular Scenarios", IEEE Communications Letters, vol. 24, no. 11, pp. 2637-2641, 2020, DOI: 10.1109/LCOMM.2020.3008870. - 2020 - в издания, индексирани в Scopus или Web of Science
13. Khazaelpour, P., Sobhani, A., Roshani, A., "A mixed-integer programming model of registration signalling and paging in a mobile communication network", International Journal of Communication Networks and Distributed Systems, vol. 26, no. 4, pp. 367-397, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
14. Dreifuerst, R.M., Daulton, S., Qian, Y., Varkey, P., Balandat, M., Kasturia, S., Tomar A., Yazdan A., Ponnampalam, V., Heath, R.W., "Optimizing coverage and capacity in cellular networks using machine learning", IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021, vol. 2021-June, pp. 8138-8142, 2021, DOI: 10.1109/ICASSP39728.2021.9414155. - 2021 - в издания, индексирани в Scopus или Web of Science
15. Hu, H., Yang, X., Xiao, S., Wang, F., "Anti-conflict AGV path planning in automated container terminals based on multi-agent reinforcement learning", International Journal of Production Research, 2021, DOI: 10.1080/00207543.2021.1998695. - 2021 - в издания, индексирани в Scopus или Web of Science
16. WANG, J., YU, M., ZHANG, X., JIANG, F., "A reinforcement learning approach for self-optimization of coverage and capacity in heterogeneous cellular networks", IEICE Transactions on Communications, vol. E104B, no. 10, pp. 1318-1327, 2021, DOI: 10.1587/transcom.2020EBP3118. - 2021 - в издания, индексирани в Scopus или Web of Science
17. Tekgul, E., Novlan, T., Akoum, S., Andrews, J.G., "Sample-Efficient Learning of Cellular Antenna Parameter Settings", IEEE Information Theory Workshop, ITW 2021, 2021, DOI: 10.1109/ITW48936.2021.9611420. - 2021 - в издания, индексирани в Scopus или Web of Science
18. Sánchez Ordóñez, P.A., Luna-Ramírez, S., Toril, M., "A computationally efficient method for QoE-driven self-planning of antenna tilts in a LTE network", IEEE Access, vol. 8, pp. 197005-197016, 2020, DOI: 10.1109/ACCESS.2020.3033325. - 2020 - в издания, индексирани в Scopus или Web of Science
19. He, W., Zhang, C., Huang, Y., "Data-driven Adaptive Control of Array Orientation in Massive MIMO Base Station", 12th International Conference on Wireless Communications and Signal Processing, WCSP 2020, pp. 510-515, 2020, DOI: 10.1109/WCSP49889.2020.9299711. - 2020 - в издания, индексирани в Scopus или Web of Science
20. Vannella, F., Jeong, J., Proutiere, A., "Off-policy Learning for Remote Electrical Tilt Optimization", IEEE Vehicular Technology Conference, vol. 2020-November, 2020, DOI: 10.1109/VTC2020-Fall49728.2020.9348456. - 2020 - в издания, индексирани в Scopus или Web of Science
21. Linsalata, F., Albanese, A., Sciancalepore, V., Roveda, F., Magarini, M., Costa-Perez, X., "OTFS-superimposed PRACH-aided Localization for UAV Safety Applications", 2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings, 2021, DOI: 10.1109/GLOBECOM46510.2021.9685862. - 2021 - в издания, индексирани в Scopus или Web of Science
22. Ndong, M., Hayajneh, M., Abu Ali, N., Alkobaisi, S., "Towards a 3-tiered space-air-ground network with reinforcement learning", Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 9, pp. 7001-7013, 2022, DOI: 10.1016/j.jksuci.2022.03.025. - 2022 - в издания, индексирани в Scopus или Web of Science
23. García, A.E., González, H.E., Schupke, D., "Hybrid Route Optimisation for Maximum Air to Ground Channel Quality", Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 105, no. 2, 2022, DOI: 10.1007/s10846-022-01590-8. - 2022 - в издания, индексирани в Scopus или Web of Science
24. Huang, C., He, R., Ai, B., Molisch, A.F., Lau, B.K., Haneda, K., Liu, B., Wang, C.-X., Yang, M., Oestges, C., Zhong, Z., "Artificial Intelligence Enabled Radio Propagation for Communications-Part I: Channel Characterization and Antenna-Channel Optimization", IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 3939-3954, 2022, DOI: 10.1109/TAP.2022.3149663. - 2022 - в издания, индексирани в Scopus или Web of Science
25. He, W., Zhang, C., Huang, Y., You, X., "Intelligent Optimization of Base Station Array Orientations via Scenario-Specific Modeling", IEEE Transactions on Communications, vol. 70, no. 3, pp. 2117-2130, 2022, DOI: 10.1109/TCOMM.2021.3135532. - 2022 - в издания, индексирани в Scopus или Web of Science
26. Margaris, A., Filippas, I., Tsagkaris, K., "Hybrid Network–Spatial Clustering for Optimizing 5G Mobile Networks", Applied Sciences (Switzerland), vol. 12, no. 3, 2022, DOI: 10.3390/app12031203. - 2022 - в издания, индексирани в Scopus или Web of Science
27. Wongphatcharatham, T., Phakphisut, W., Wijitpornchai, T., Areeprayoonkij, P., Jaruvitayakovit, T., Hannanta-Anan, P., "Multi-Agent Q-Leaming for Power Allocation in Interference Channel", ITC-CSCC 2022 - 37th International Technical Conference on Circuits/Systems, Computers and Communications, pp. 876-879, 2022, DOI: 10.1109/ITC-CSCC55581.2022.9894852. - 2022 - в издания, индексирани в Scopus или Web of Science
28. Oroojlooy, A., Hajinezhad, D., "A review of cooperative multi-agent deep reinforcement learning", Applied Intelligence, 2022, DOI: 10.1007/s10489-022-04105-y. - 2022 - в издания, индексирани в Scopus или Web of Science
29. Jin, Y., Vannella, F., Bouton, M., Jeong, J., Hakim, E.A., "A Graph Attention Learning Approach to Antenna Tilt Optimization", 2022 1st International Conference on 6G Networking, 6GNet 2022, 2022, DOI: 10.1109/6GNet54646.2022.9830258. - 2022 - в издания, индексирани в Scopus или Web of Science
30. Qureshi, M.N., Shahid, M.K., Tiwana, M.I., Haddad, M., Ahmed, I., Faisal, T., "Neural Networks for Energy-Efficient Self Optimization of eNodeB Antenna Tilt in 5G Mobile Network Environments", IEEE Access, vol. 10, pp. 61678-61694, 2022, DOI: 10.1109/ACCESS.2022.3181595. - 2022 - в издания, индексирани в Scopus или Web of Science
31. Liu, I.-J., Yeh, R.A., Schwing, A.G., "PIC: Permutation Invariant Critic for Multi-Agent Deep Reinforcement Learning", Proceedings of Machine Learning Research, vol. 100, pp. 590-602, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
32. Tekgul, E., Novlan, T., Akoum, S., Andrews, J.G., "Uplink-Downlink Joint Antenna Optimization in Cellular Systems with Sample-Efficient Learning", 2022 IEEE Global Communications Conference, GLOBECOM 2022 - Proceedings, pp. 6499-6504, 2022, DOI: 10.1109/GLOBECOM48099.2022.10001578. - 2022 - в издания, индексирани в Scopus или Web of Science
33. Yang, L.I., Zhang, S., Ren, X., Zhu, J., Huang, J., Pengcheng, H.E., Shen, K., Yao, Z., Gong, J., Chang, T., Shi, Q., Luo, Z., "Real-World Wireless Network Modeling and Optimization: From Model/Data-Driven Perspective", Chinese Journal of Electronics, vol. 31, no. 6, pp. 991-1012, 2022, DOI: 10.1049/cje.2022.00.191. - 2022 - в издания, индексирани в Scopus или Web of Science
34. Dey, S., Mujumdar, A., Dasgupta, P., Dey, S., "Adaptive Safety Shields for Reinforcement Learning-Based Cell Shaping", IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 5034-5043, 2022, DOI: 10.1109/TNSM.2022.3194566. - 2022 - в издания, индексирани в Scopus или Web of Science
35. Gao, X., Yi, W., Agapitos, A., Wang, H., Liu, Y., "Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A Machine Learning Approach", IEEE Wireless Communications and Networking Conference, WCNC, vol. 2023-March, 2023, DOI: 10.1109/WCNC55385.2023.10118599. - 2023 - в издания, индексирани в Scopus или Web of Science
36. Vannella, F., Jeong, J., Proutiere, A., "Off-Policy Learning in Contextual Bandits for Remote Electrical Tilt Optimization", IEEE Transactions on Vehicular Technology, vol. 72, no. 1, pp. 546-556, 2023, DOI: 10.1109/TVT.2022.3202041. - 2023 - в издания, индексирани в Scopus или Web of Science
37. Sudhamani, C., Roslee, M., Tiang, J.J., Rehman, A.U., "A Survey on 5G Coverage Improvement Techniques: Issues and Future Challenges", Sensors, vol. 23, no. 4, 2023, DOI: 10.3390/s23042356. - 2023 - в издания, индексирани в Scopus или Web of Science
38. Wongphatcharatham, T., Phakphisut, W., Puttarak, N., "Multi-Agent Deep Q-Learning for Antenna Tilt Optimization in Wireless Networks", 2023 International Technical Conference on Circuits/Systems, Computers, and Communications, ITC-CSCC 2023, 2023, DOI: 10.1109/ITC-CSCC58803.2023.10212518. - 2023 - в издания, индексирани в Scopus или Web of Science
39. Gao, X., Yi, W., Liu, Y., Zhang, J., Zhang, P., "DRL Enabled Coverage and Capacity Optimization in STAR-RIS-Assisted Networks", IEEE Transactions on Communications, vol. 71, no. 11, pp. 6616-6632, 2023, DOI: 10.1109/TCOMM.2023.3296753. - 2023 - в издания, индексирани в Scopus или Web of Science
40. Hasan, C., Agapitos, A., Lynch, D., Castagna, A., Cruciata, G., Wang, H., Milenovic, A., "Continual Model-Based Reinforcement Learning for Data Efficient Wireless Network Optimisation", Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 14174 LNAI, pp. 295-311, 2023, DOI: 10.1007/978-3-031-43427-3_18. - 2023 - в издания, индексирани в Scopus или Web of Science
41. Forsberg, A.L., Nikou, A., Feljan, A.V., Tumova, J., "Network Parameter Control in Cellular Networks through Graph-Based Multi-Agent Constrained Reinforcement Learning", IEEE International Conference on Automation Science and Engineering, vol. 2023-August, 2023, DOI: 10.1109/CASE56687.2023.10260368. - 2023 - в издания, индексирани в Scopus или Web of Science
42. Imran M.A.; Dos Reis A.F.; Brante G.; Klaine P.V.; Souza R.D., "Machine Learning in Energy Efficiency Optimization", Machine Learning for Future Wireless Communications, pp. 105-117, 2019, DOI: 10.1002/9781119562306.ch6. - 2019 - в издания, индексирани в Scopus или Web of Science
43. Posch F.; Fakhreddine A.; Caballero E.; Bettstetter C., "A Classifier for Aerial Users in 5G Networks", 2023 IEEE Globecom Workshops, GC Wkshps 2023, pp. 775-780, 2023, DOI: 10.1109/GCWkshps58843.2023.10464915. - 2023 - в издания, индексирани в Scopus или Web of Science
44. Pafitis M.; Savva A.; Kyrkou C.; Kolios P.; Theocharides T., "MELETI: A Machine-Learning-Based Embedded System Architecture for Infrastructure Inspection with UAVs", Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing: Use Cases and Emerging Challenges, pp. 285-311, 2023, DOI: 10.1007/978-3-031-40677-5_12. - 2023 - в издания, индексирани в Scopus или Web of Science
45. Tekgul E.; Novlan T.; Akoum S.; Andrews J.G., "Joint Uplink-Downlink Capacity and Coverage Optimization via Site-Specific Learning of Antenna Settings", IEEE Transactions on Wireless Communications, vol. 23, no. 5, pp. 4032-4048, 2024, DOI: 10.1109/TWC.2023.3313916. - 2024 - в издания, индексирани в Scopus или Web of Science
46. Li S.; Magli E.; Francini G.; Ghinamo G., "Deep learning based prediction of traffic peaks in mobile networks", Computer Networks, vol. 240, 2024, DOI: 10.1016/j.comnet.2023.110167. - 2024 - в издания, индексирани в Scopus или Web of Science
47. Gu Y.; Chai S.; Sun B.; Chen Y.; Shi Q., "Optimizing Wireless Coverage and Capacity with PPO-Based Adaptive Antenna Configuration", IEEE International Conference on Communications, pp. 2573-2579, 2024, DOI: 10.1109/ICC51166.2024.10622990. - 2024 - в издания, индексирани в Scopus или Web of Science
48. Mollerstedt V.E.; Russo A.; Bouton M., "Model Based Residual Policy Learning with Applications to Antenna Control", 2024 IEEE International Conference on Machine Learning for Communication and Networking, ICMLCN 2024, pp. 405-411, 2024, DOI: 10.1109/ICMLCN59089.2024.10624756. - 2024 - в издания, индексирани в Scopus или Web of Science
49. Na H.; Seo Y.; Moon I.-C., "EFFICIENT EPISODIC MEMORY UTILIZATION OF COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING", 12th International Conference on Learning Representations, ICLR 2024, 2024. - 2024 - в издания, индексирани в Scopus или Web of Science
50. Bandyopadhyay S.; Pushpendra Sharma A.; Goyal A.; Muralidharan A., "Domain Compliant Recommendation of Remote Electrical Tilt Using ML Approach", 2024 16th International Conference on COMmunication Systems and NETworkS, COMSNETS 2024, pp. 671-675, 2024, DOI: 10.1109/COMSNETS59351.2024.10427283. - 2024 - в издания, индексирани в Scopus или Web of Science
51. Liu X.; Chuai G.; Wang X.; Xu Z.; Gao W.; Zhang K.; Liu Q.; Maimaiti S.; Zuo P., "QoE-Driven Antenna Tuning in Cellular Networks With Cooperative Multi-Agent Reinforcement Learning", IEEE Transactions on Mobile Computing, vol. 23, no. 2, pp. 1186-1199, 2024, DOI: 10.1109/TMC.2022.3230711. - 2024 - в издания, индексирани в Scopus или Web of Science
52. Ameen A.S.; Radhi S.Y., "Optimum Base Station Antenna Tilt Angle for Inter-Cell Interference Limited Mobile Cellular System", Jordan Journal of Electrical Engineering, vol. 10, no. 3, pp. 443-464, 2024, DOI: 10.5455/jjee.204-1696884748. - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science