Autors: Ivanov, A. S., Stoynov, V. R., Angelov, K. N., Stefanov, R. S., Atamyan, D. K., Tonchev, K., Poulkov, V. K. Title: 3D Interference Mapping for Indoor IoT Scenarios Keywords: 3D interference maps; Internet of Things; sensors; spectrum Abstract: Integration of the Internet of Things (IoT) devices within ultra-dense networks (UDN) requires precise assessment of the interference and spectrum occupancy to achieve high utilization of the limited resources especially in the unlicensed bands. Dense indoor deployment scenarios can be very diverse due to different placement requirements of the IoT devices related to their specific functionality, thus causing complex interference environments. For such scenarios it is very important to perform 3D spectrum measurements for the correct estimation of the spectrum utilization and interference caused by IoT devices. This paper presents an experimental study of the indoor spectrum occupancy and interference for two popular wireless standards for IoT in the unlicensed bands-LoRa and WiFi through the development of 3D interference heat maps. They illustrate the non-uniform distribution of the interference in the indoor environment and can be used for proper planning of the placements.. References Issue
Copyright IEEE |
Цитирания (Citation/s):
1. Azari, A., Masoudi, M., "Interference management for coexisting Internet of Things networks over unlicensed spectrum", Ad Hoc Networks, vol. 120, 2021, DOI: 10.1016/j.adhoc.2021.102539. - 2021 - в издания, индексирани в Scopus или Web of Science
2. Wei, Z., Yao, R., Kang, J., Chen, X., Wu, H., "Three-Dimensional Spectrum Occupancy Measurement Using UAV: Performance Analysis and Algorithm Design", IEEE Sensors Journal, vol. 22, no. 9, pp. 9146-9157, 2022, DOI: 10.1109/JSEN.2022.3161311. - 2022 - в издания, индексирани в Scopus или Web of Science
3. Srikamta, N., Namee, K., Chatngoen, K., Boonkuson, N., Meny, A., Kaewsaeng-On, R., "A Study of the Accuracy of the Software Site Survey to Find the Appropriate Location to Install the Access Point for Indoor Positioning", International Conference on ICT and Knowledge Engineering, vol. 2022-November, 2022, DOI: 10.1109/ICTKE55848.2022.9983217. - 2022 - в издания, индексирани в Scopus или Web of Science
4. Hu, T., Huang, Y., Chen, J., Wu, Q., Gong, Z., "3D Radio Map Reconstruction Based on Generative Adversarial Networks Under Constrained Aircraft Trajectories", IEEE Transactions on Vehicular Technology, vol. 72, no. 6, pp. 8250-8255, 2023, DOI: 10.1109/TVT.2023.3239556. - 2023 - в издания, индексирани в Scopus или Web of Science
5. He S.; Zhu L.; Wang L.; Zeng W.; Qin Z., "Fine-grained spectrum map inference: A novel approach based on deep residual network", IET Communications, vol. 18, no. 16, pp. 925-937, 2024, DOI: 10.1049/cmu2.12786. - 2024 - в издания, индексирани в Scopus или Web of Science
6. Wang H.; Mao X.; Zhang C.; Zhang G., "Study of spectrum sharing in integrated satellite-terrestrial system based on space-based interference cartography", Tongxin Xuebao/Journal on Communications, vol. 45, no. 3, pp. 155-165, 2024, DOI: 10.11959/j.issn.1000-436x.2024056. - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science