Autors: Lui, J., Heidarinejad, M., Pitchurov, G. T., Zhang, L., Srebric, J.
Title: An extensive comparison of modified zero-equation, standard k-ε, and LES models in predicting urban airflow
Keywords: Computational Fluid Dynamics (CFD),OpenFOAMUrban microclimateZero-equation (ZEQ) turbulence model

Abstract: Accurate CFD simulations of urban airflow are of significant importance for a large variety of environmental studies and associated building energy consumption. As a relatively fast and reliable turbulence model compared to Standard k-ε turbulence model (SKE) and Large Eddy Simulation (LES), the improved Zero-equation (ZEQ) turbulence model has gained attention to simulate outdoor airflow and contaminant dispersion. This study evaluates the performance of four commonly used ZEQ turbulence models applied to flow around urban environments and analyze their sensitivity and uncertainty for different airflow configurations. These configurations entail airflow around (1) an isolated building, (2) regular blocks, and (3) building complexes. The results show that average computational time for these three turbulence modeling approaches (ZEQ: SKE: LES) scaled approximately to a 1:5:30 ratio, which demonstrated the computational competitiveness of ZEQ as a fast turbulence model for prediction o

References

    Issue

    Sustainable Cities and Society, vol. 40, pp. 28-43, 2018, United States, Elsevier, DOI 10.1016/j.scs.2018.03.010

    Цитирания (Citation/s):
    1. Lee, K.Y., Mak, C.M., A comprehensive approach to study stack emissions from a research building in a small urban setting, Sustainable Cities and Society, Vol. 51, DOI: 10.1016/j.scs.2019.101710 - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Shree, V., Marwaha, B.M., Awasthi, P., Assessment of indoor air quality in buildings using CFD: A brief review, International Journal of Mathematical, Engineering and Management Sciences, Vol. 4, Issue 5, 2019, Pages 1154-1168, DOI: 10.33889/IJMEMS.2019.4.5-091 - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Liu, J., Niu, J., Du, Y., Mak, C.M., Zhang, Y. LES for pedestrian level wind around an idealized building array—Assessment of sensitivity to influencing parameters (2019) Sustainable Cities and Society, 44, pp. 406-415. DOI: 10.1016/j.scs.2018.10.034 - 2019 - в издания, индексирани в Scopus или Web of Science
    4. Liu, J., Zhu, S., Kim, M.K., Srebric, J. A review of CFD analysis methods for personalized ventilation (PV) in indoor built environments (2019) Sustainability (Switzerland), 11 (15), art. no. 4166. DOI: 10.3390/su11154166 - 2019 - в издания, индексирани в Scopus или Web of Science
    5. Liu, J., Heidarinejad, M., Nikkho, S.K., Mattise, N.W., Srebric, J. Quantifying impacts of urban microclimate on a building energy consumption-a case study (2019) Sustainability (Switzerland), 11 (18), art. no. 4921. DOI: 10.3390/su11184921 - 2019 - в издания, индексирани в Scopus или Web of Science
    6. Shirzadi, M., Tominaga, Y., Mirzaei, P.A. Experimental and steady-RANS CFD modelling of cross-ventilation in moderately-dense urban areas (2020) Sustainable Cities and Society, 52, art. no. 101849. DOI: 10.1016/j.scs.2019.101849 - 2020 - в издания, индексирани в Scopus или Web of Science
    7. Tantoro, B., Tey, W.Y., Ryan, W.Y.H. Pressure drop of partially blocked hagen-poiseuille flow using CFD simulation (2020) International Journal of Automotive and Mechanical Engineering, 17 (1), pp. 7552-756. DOI: 10.15282/IJAME.17.1.2020.04.0559 - 2020 - в издания, индексирани в Scopus или Web of Science
    8. Hadavi, M., Pasdarshahri, H. Quantifying impacts of wind speed and urban neighborhood layout on the infiltration rate of residential buildings (2020) Sustainable Cities and Society, 53, art. no. 101887. DOI: 10.1016/j.scs.2019.101887 - 2020 - в издания, индексирани в Scopus или Web of Science
    9. Liu, T., Lee, W.L. Evaluating the influence of transom window designs on natural ventilation in high-rise residential buildings in Hong Kong (2020) Sustainable Cities and Society, 62, art. no. 102406. DOI: 10.1016/j.scs.2020.102406 - 2020 - в издания, индексирани в Scopus или Web of Science
    10. Jaszczur, M., Madejski, P., Borowski, M., Karch, M. Experimental Analysis of the Air Stream Generated by Square Ceiling Diffusers to Reduce Energy Consumption and Improve Thermal Comfort (2021) Heat Transfer Engineering, 43 (3-5), pp. 463-473. DOI: 10.1080/01457632.2021.1875169 - 2021 - в издания, индексирани в Scopus или Web of Science
    11. Shirzadi, M., Mirzaei, P.A., Tominaga, Y. LES analysis of turbulent fluctuation in cross-ventilation flow in highly-dense urban areas (2021) Journal of Wind Engineering and Industrial Aerodynamics, 209, art. no. 104494. DOI: 10.1016/j.jweia.2020.104494 - 2021 - в издания, индексирани в Scopus или Web of Science
    12. Liu, T., Wang, X., Lee, W.L. Evaluating the effectiveness of transom window in reducing cooling energy use in high-rise residential buildings in Hong Kong (2021) Journal of Building Engineering, 35, art. no. 102007. DOI: 10.1016/j.jobe.2020.102007 - 2021 - в издания, индексирани в Scopus или Web of Science
    13. Trindade da Silva, F., Costa Reis Jr., N., Santos, J.M., Valentim Goulart, E., Simões Maciel, F., Bragança, L., Engel de Alvarez, C. Atmospheric dispersion and urban planning: An interdisciplinary approach to city modeling (2021) Sustainable Cities and Society, 70, art. no. 102882. DOI: 10.1016/j.scs.2021.102882 - 2021 - в издания, индексирани в Scopus или Web of Science
    14. Zhang, S., Kwok, K.C.S., Liu, H., Jiang, Y., Dong, K., Wang, B. A CFD study of wind assessment in urban topology with complex wind flow (2021) Sustainable Cities and Society, 71, art. no. 103006. DOI: 10.1016/j.scs.2021.103006 - 2021 - в издания, индексирани в Scopus или Web of Science
    15. He, Y., Liu, X.-H., Zhang, H.-L., Zheng, W., Zhao, F.-Y., Aurel Schnabel, M., Mei, Y. Hybrid framework for rapid evaluation of wind environment around buildings through parametric design, CFD simulation, image processing and machine learning (2021) Sustainable Cities and Society, 73, art. no. 103092. DOI: 10.1016/j.scs.2021.103092 - 2021 - в издания, индексирани в Scopus или Web of Science
    16. Yan, Z., Chen, R., Cai, X.-C. Large eddy simulation of the wind flow in a realistic full-scale urban community with a scalable parallel algorithm (2022) Computer Physics Communications, 270, art. no. 108170. DOI: 10.1016/j.cpc.2021.108170 - 2022 - в издания, индексирани в Scopus или Web of Science
    17. Meesang, W., Baothong, E., Poojeera, S., Kaenka, W., Mathapha, S., Srichat, A., Junsiri, C. Model Feasibility of Air Pollution Treatment Using Plants as Filter by Computational Fluid Dynamic (CFD) Analysis: A Case Study in Laboratory (2022) EnvironmentAsia, 15 (1), pp. 142-153. DOI: 10.14456/ea.2022.13 - 2022 - в издания, индексирани в Scopus или Web of Science
    18. Zhang, T., Li, M., Guo, J., Gou, H., Mu, K. Numerical Study on Mechanism and Parameters Optimization of Temporary Plugging by Particles in Wellbore (2022) SPE Production and Operations, 37 (1), pp. 135-150. DOI: 10.2118/208585-PA - 2022 - в издания, индексирани в Scopus или Web of Science
    19. Stockman, T., Zhu, S., Kumar, A., Wang, L., Patel, S., Weaver, J., ... & Miller, S. L. (2021). Measurements and simulations of aerosol released while singing and playing wind instruments. ACS Environmental Au, 1(1), 71-84. https://doi.org/10.1021/acsenvironau.1c00007 - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science