Autors: Nenova, M. V., Bosale, K. S., Iliev, G. L.
Title: Intrusion Detection in Communication Networks Using Different Classifiers
Keywords: CNN Naïve Bayes CNN SVM ANN KNN KDD container 99 dataset LOI

Abstract: In this paper, we have executed Intrusion detection over computer networks utilizing different machine learning classifier algorithms. Here, we have compared the five different classifiers with the feature extraction technique using KDD Container 99 dataset. We compared the Navies Bayes Classifier, CNN Classifier, SVM Classifier, ANN Classifier, and KNN Classifier for obtaining better results compared with existing techniques and system. In this paper, we have used the Feature Extraction algorithm along with this classifier and compared these five classifiers’ results with each other. In this system, we have used the DDOS attacks created by the LOIC tools and executed the real-time execution of our proposed system. Here we have done the comparative study with all five classifiers using the performance matrix. In this paper, we proposed the Feature Extraction Algorithm in addition with better Classifiers using KDD Container 99 Dataset. We have measured the value of precision, recall..

References

    Issue

    Techno-Societal 2018, Springer, pp. 19-29, 2020, India, Springer, ISBN 978-3-030-16961-9

    Цитирания (Citation/s):
    1. Reddy SaiSindhuTheja, Gopal K. Shyam, An efficient metaheuristic algorithm based feature selection and recurrent neural network for DoS attack detection in cloud computing environment, Applied Soft Computing Journal, Volume 100, 106997, ISSN 1568-4946, 2021. - 2021 - в издания, индексирани в Scopus или Web of Science
    2. Jaw E, Wang X. Feature Selection and Ensemble-Based Intrusion Detection System: An Efficient and Comprehensive Approach. Symmetry. 2021; 13(10):1764. https://doi.org/10.3390/sym13101764. - 2021 - в издания, индексирани в Scopus или Web of Science
    3. Awotunde, Joseph Bamidele, and Sanjay Misra. "Feature Extraction and Artificial Intelligence-Based Intrusion Detection Model for a Secure Internet of Things Networks." Illumination of Artificial Intelligence in Cybersecurity and Forensics. Springer, Cham, 2022. 21-44. - 2022 - в издания, индексирани в Scopus или Web of Science
    4. Jaw E, Wang X. 2022. A novel hybrid-based approach of snort automatic rule generator and security event correlation (SARG-SEC) PeerJ Computer Science 8:e900 https://doi.org/10.7717/peerj-cs.900 - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    5. Sumathi, S; Rajesh, R; Karthikeyan, N, DDoS Attack Detection Using Hybrid Machine Learning Based IDS Models, Journal of Scientific & Industrial Research Vol. 81, March 2022, pp. 276-286 - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    6. Awotunde, J.B., Misra, S. (2022). Feature Extraction and Artificial Intelligence-Based Intrusion Detection Model for a Secure Internet of Things Networks. In: Misra, S., Arumugam, C. (eds) Illumination of Artificial Intelligence in Cybersecurity and Forensics. Lecture Notes on Data Engineering and Communications Technologies, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-93453-8_2 - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    7. Sokkalingam, Sumathi, and Rajesh Ramakrishnan. "An intelligent intrusion detection system for distributed denial of service attacks: A support vector machine with hybrid optimization algorithm based approach." Concurrency and Computation: Practice and Experience 34.27 (2022): e7334. - 2022 - в издания, индексирани в Scopus или Web of Science
    8. Alkhamaiseh, Ashaar, Mouhammd Alkasassbeh, and Jaafer Al-Saraireh. "Unknown Attack Detection Based on Multistage One-Class SVM." 2022 International Conference on Emerging Trends in Computing and Engineering Applications (ETCEA). IEEE, 2022. - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    9. Balasubramaniam, S., K. Siva Sankar, C. Brindha Malar, M. Pallikonda Rajasekaran, N. Arunkumar, and M. Thilagaraj. “Detecting the Type of Attack in Healthcare Cloud Computing System Using Termite Deep Belief Neural Network (TDBNN) for Future Smart Cities.” Journal of Testing and Evaluation 51, no. 3 (2023): 1421–37. https://doi.org/10.1520/JTE20220041 - 2023 - в издания, индексирани в Scopus или Web of Science
    10. P. Akhther, A. Maryposonia and V. S. Prasanth, "Least Square Support Vector Machine based Intrusion Detection System in IoT," 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2023, pp. 1545-1550, doi: 10.1109/ICICCS56967.2023.10142805 - 2023 - в издания, индексирани в Scopus или Web of Science
    11. S. Sakthivel, M. Agalya, R. V. Sudha, V. Lathika, P. Selvi and N. Suriyapriya, "Wireless Sensor Network based Anomaly Detection using SVM-RFE-MRMR," 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2023, pp. 1497-1502, doi: 10.1109/ICICCS56967.2023.10142785 - 2023 - в издания, индексирани в Scopus или Web of Science

    Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus