Autors: Christoff, N. V., Manolova, A. H., Jorda, L., Mari, J.-L.
Title: Morphological Crater Classification via Convolutional Neural Network with Application on MOLA data
Keywords: 3D mesh, CNN, Crater classification, Mars

Abstract: The only approach for a surface age dating is the impact crater count. In order to facilitate this process, many automatic approaches have been proposed for the impact crater detection. However, the origin and the morphological features of those impact craters can influence the accurate crater count. In this article, we propose a novel approach for crater morphological classification. The developed method is based on a study of a 3D triangulated mesh of Mars' sample. We use a curvature analysis and local quantization method in combination with a convolution neural network to automatically classify impact craters in three categories: valid, secondary and degraded craters.

References

    Issue

    ANNA 2018 - Advances in Neural Networks and Applications 2018, pp. 96-100, 2018, Bulgaria, ISBN 978-3-8007-4756-6

    Цитирания (Citation/s):
    1. Ali-Dib, M., Menou, K., Jackson, A. P., Zhu, C., Hammond, N., Automated crater shape retrieval using weakly-supervised deep learning, Icarus, vol. 345, article 113749, https://doi.org/10.1016/j.icarus.2020.113749 , 2020 - 2020 - в издания, индексирани в Scopus или Web of Science
    2. Alnaim, N., Abbod, M., Swash, R., Recognition of Holoscopic 3D Video Hand Gesture Using Convolutional Neural Networks, Technologies 2020, 8(2), 19; https://doi.org/10.3390/technologies8020019, 2020 - 2020 - в издания, индексирани в Scopus или Web of Science
    3. Yang, B., Zong Z.,Chen, C.,Sun. W., Mi X.,Wu, W.,Huang R., Real time approach for underground objects detection from vehicle-borne ground penetrating radar, Acta Geodaetica et Cartographica Sinica, 49(7): 874-882, DOI: 10.11947/j.AGCS.2020.20190293, 2020 - 2020 - в издания, индексирани в Scopus или Web of Science
    4. Aji, S., Kumam, P., Siricharoen, P., Bukar, A. M., & Adamu, M. S. (2021). Deep Transfer Learning for Automated Artillery Crater Classification. Thai Journal of Mathematics, 19(3), 1068-1081. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    5. Yang, X. I. A. O., Shuai, L. I., Guangze, W. A. N. G., Wei, S. H. A. O., & Wenlong, Y. A. O. (2022). Deep Learning Prediction Frame Matching Algorithm of Small Celestial Navigation Landmarks. 深空探测学报 (中英文), 9(4), 1-7. DOI: 10.15982/j.issn.2096-9287.2022.20220025 - 2022 - в издания, индексирани в Scopus или Web of Science
    6. Shao, W., Xi, H-L., Wang, G-Z., Xiao, Y., Ma, G-F, Yao, W-L. (2021), An Intelligent Detection Algorithm for Small Body Craters in Faint Environment [暗弱环境下小天体陨石坑智能检测算法], Yuhang Xuebao/Journal of Astronautics, vol. 42 (11), pp. 1439 – 1445, DOI: 10.3873/j.issn.1000-1328.2021.11.010 - 2021 - в издания, индексирани в Scopus или Web of Science
    7. 郑磊, 胡维多, & 刘畅. (2020). 基于深度学习的大型陨石坑识别方法研究. 北京航空航天大学学报, 46(5), 994-1004. DOI: 10.13700/j.bh.1001-5965.2019.0342 - 2020 - в издания, индексирани в Scopus или Web of Science
    8. Aburaed, N., Alsaad, M., Mansoori, S.A., Al-Ahmad, H. (2023). A Study on the Autonomous Detection of Impact Craters. In: El Gayar, N., Trentin, E., Ravanelli, M., Abbas, H. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2022. Lecture Notes in Computer Science(), vol 13739, pp 181–194 Springer, Cham. DOI: 10.1007/978-3-031-20650-4_15 - 2022 - в издания, индексирани в Scopus или Web of Science
    9. Shaheen, F., Lala, M. G. N., & Krishna, A. P. (2022). Assessment of Morphology and Degradation of Craters in and Around Gale Crater, Mars Using High Resolution Stereo Camera (HRSC) Images. Journal of the Indian Society of Remote Sensing, 1-18. DOI: 10.1007/s12524-022-01644-2 - 2022 - в издания, индексирани в Scopus или Web of Science

    Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus