Autors: Manolova, A. H., Tsenov, G. T., Lazarova V., Neshov, N. N.
Title: Combined EEG and EMG fatigue measurement framework with application to hybrid brain-computer interface
Keywords: Electromyography , Electroencephalography, Fatigue, Muscles,

Abstract: In recent years, the EEG-based brain-computer interface has become one of the most promising areas of research in computer science and robotics. Many international research teams combining engineers and doctors, experts in neuroscience are trying to develop useful applications and devices offering disabled people to lead a normal life. Useful BCIs for disabled people suffering from Cerebral palsy, Parkinson's disease, Brain injury, Spinal cord injuries, Multiple sclerosis, Stroke, Post-polio syndrome should allow them to use all their existing brain and muscle abilities as control possibilities. In this paper we present a framework based on the mutimodal fusion approach of the user's electromyographic and electroencephalographic activities in a so called “Hybrid-BCI”. Although EEG BCI alone yields good performance as already proved in many research papers, it is outperformed by the fusion of EEG and EMG. We investigate the influence of muscular fatigue on the EMG performance.

References

    Issue

    IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1-5, 2016, Bulgaria, IEEE, DOI 10.1109/BlackSeaCom.2016.7901569

    Copyright IEEE

    Цитирания (Citation/s):
    1. Tryon, Jacob, Evan Friedman, and Ana Luisa Trejos. "Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification." In 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pp. 971-976. IEEE - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Wang, Fei, Xiaotong Wei, Jiyuan Guo, Yongbo Zheng, Jiaqi Li, and Siyi Du. "Research Progress of Rehabilitation Exoskeletal Robot and Evaluation Methodologies Based on Bioelectrical Signals." In 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 826-831. IEEE - 2019 - в издания, индексирани в Scopus или Web of Science
    3. LaRocco J, Le MD and Paeng D-G (2020) A Systemic Review of Available Low-Cost EEG Headsets Used for Drowsiness Detection. Front. Neuroinform. 14:553352. doi: 10.3389/fninf.2020.553352 - 2020 - в издания, индексирани в Scopus или Web of Science
    4. Aswani Saji, P. P. Muhammed Shanir, A. Asif Sha, and Nissan Kunju , "Analysis of EEG for classification vowel sounds" , AIP Conference Proceedings 2222, 030030 (2020) - 2020 - в издания, индексирани в Scopus или Web of Science
    5. Balashanmuga Vadivu, P., Sundararajan, J. EEG signal based brain activity monitoring using adaptive wavelet transform and activity learning neural vector (ALNV) classification technique. Multimed Tools Appl 79, 4199–4215 (2020). https://doi.org/10.1007/s11042-019-7718-x - 2020 - в издания, индексирани в Scopus или Web of Science
    6. Jamil, N., Belkacem, A. N., Ouhbi, S., & Lakas, A. (2021). Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain–Computer Interfaces: A Systematic Literature Review. Sensors, 21(14), 4754. - 2021 - в издания, индексирани в Scopus или Web of Science
    7. Cisotto, G., Capuzzo, M., Guglielmi, A. V., & Zanella, A. (2021). Feature Stability and Setup Minimization for EEG-EMG-Enabled Monitoring Systems. EURASIP Journal on Advances in Signal Processing, DOI 10.21203/rs.3.rs-951388/v1 - 2021 - в издания, индексирани в Scopus или Web of Science
    8. Siddiqui, F., Mohammad, A., Alam, M. A., Naaz, S., Agarwal, P., Sohail, S. S., & Madsen, D. Ø. (2023). Deep Neural Network for EEG Signal-Based Subject-Independent Imaginary Mental Task Classification. Diagnostics, 13(4), 640. - 2023 - в издания, индексирани в Scopus или Web of Science

    Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science