Autors: Petrova, Z. A., Puleva, T. T. Title: The mathematical modeling of the equation of Duffing with applications for master degree students-Part II (Open Access) Keywords: Duffing equation, sufficient conditions for oscilation Abstract: All the parts of this publication treat different aspects of the qualitative theory of the Duffing equation ẍ(t)+δẋ(t)+αx(t)+βx3(t)=u(t), where the coefficients α, β and δ are real constants and u(t)∈C([0,∞);R). In the first part we formulated sufficient conditions for oscillation for this equation assuming that α>0,β>0,δ∈Rand4α>δ2. We applied Matlab and Simulink for the linear particular case of the above equation, i. e. for ẍ(t)+δẋ(t)+αx(t)=u(t) in order to illustrate the respective oscillation results. In this part we repeat only these sufficient conditions for oscillation, which are concerned with the following homogenous particular case of the Duffing equation ẍ(t)+δẋ(t)+αx(t)+βx3(t)=0 and make some connection with the bifurcation theory References Issue
Copyright American Institute of Physics Inc. |
Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus