Autors: Pleshkova, S. P., Bekiarski, A. B.
Title: Audio visual attention models in the mobile robots navigation
Keywords: mobile robots, audio visual sensors, audio visual perception

Abstract: The mobile robots are equipped with sensitive audio visual sensors, usually microphone arrays and video cameras. They are the main sources of audio visual information to perform suitable mobile robots navigation tasks, modeling the human audio visual perception. The results from the audio and visual perception algorithms are widely used, separate or in conjunction (audio visual perception) in the mobile robots navigation, for example to control mobile robots motion in applications like people and objects tracking, surveillance systems, etc. The effectiveness and precision of the audio visual perception methods in the mobile robots navigation can be enhanced combining audio visual perception with audio visual attention.


  1. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S., 2015, Principles of Robot Motion: Theory, Algorithms, and Implementations, Berlin, MIT Press
  2. Brooks, R., Breazeal, C., Marjanovic, M., Scassellati, B., Williamson, M. The Cog project: Building a humanoid robot, 1999, The Cog project: Building a humanoid robot, Computation for Metaphors, Analogy, and Agents, Volume Volume 3, Number 4, pp. pp. 52-87
  3. Filho, A., 2010, Humanoid Robots. New Developments, Vienna Austria, dvanced Robotic Systems International and I-Tech
  4. Jarvis, R., 2008, Intelligent Robotics: Past, present and future, Int. J. Comput. Sci. Appl. (Technomathematics Research Foundation), Volume 5 (3), pp. pp. 23-35
  5. Adams, B., Breazeal, C., Brooks, R.A., Scassellati, B., 2000, Humanoid robots: A new kind of tool, EEE Intelligent Systems and Their Applications, Volume 15 (4), pp. pp. 25-30
  6. Sezer, V., Gokasan, M., 2012, A novel obstacle avoidance algorithm: "Follow the gap method", Robotics and Autonomous Systems, Volume 60 (9), pp. pp. 1123-1134


Intelligent Systems Reference Library , 2016, pp. 253-294, 2016, Germany, Springer Science and Business Media Deutschland GmbH, ISSN 18684394

Цитирания (Citation/s):
1. Fanjun Bu, Chien-Ming Huang. Object Permanence Through Audio-Visual Representations, October 2020 - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
2. L. C. Jain, L. C. Jain, M. Favorskaya. Innovative Algorithms in Computer Vision. Computer Science 2018, DOI:10.1007/978-3-319-67994-5_1 Corpus ID: 196154008 - 2018 - в издания, индексирани в Scopus или Web of Science

Вид: книга/глава(и) от книга, публикация в издание с импакт фактор, публикация в реферирано издание