Autors: Angelov, G. V., Nikolov, D. N., Hristov, M. H.
Title: Technology and Modeling of Nonclassical Transistor Devices
Keywords: High carrier mobility, Multiple gate transistors, Non-classi

Abstract: This paper presents a comprehensive outlook for the current technology status and the prospective upcoming advancements. VLSI scaling trends and technology advancements in the context of sub-10-nm technologies are reviewed as well as the associated device modeling approaches and compact models of transistor structures are considered. As technology goes into the nanometer regime, semiconductor devices are confronting numerous short-channel effects. Bulk CMOS technology is developing and innovating to overcome these constraints by introduction of (i) new technologies and new materials and (ii) new transistor architectures. Technology boosters such as high-k/metal-gate technologies, ultra-thin-body SOI, Ge-on-insulator (GOI), AIII-BV semiconductors, and band-engineered transistor (SiGe or Strained Si-channel) with high-carrier-mobility channels are examined..

References

    Issue

    Journal of Electrical and Computer Engineering Open Access, vol. Volume 2019, 2019, pp. Article number 4792461, 2019, Iran, Hindawi Limited, DOI 10.1155/2019/4792461

    Цитирания (Citation/s):
    1. Abdul-Kadir, F.N., Mohammad, K.K. & Hashim, Y. 2020, "Investigation and design of ion-implanted MOSFET based on (18 nm) channel length", Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 5, pp. 2635-2641. - 2020 - в издания, индексирани в Scopus или Web of Science
    2. Atalla, Y., Hashim, Y., Ghafar, A.N.A. & Jabbar, W.A. 2020, "Temperature characteristics of FinFET based on channel fin width and working voltage", International Journal of Electrical and Computer Engineering, vol. 10, no. 6, pp. 5650-5657. - 2020 - в издания, индексирани в Scopus или Web of Science
    3. Dargar, A. & Srivastava, V.M. 2021, "Thickness modeling of short-channel cylindrical surrounding double-gate mosfet at strong inversion using depletion depth analysis", Micro and Nanosystems, vol. 13, no. 3, pp. 319-325. - 2021 - в издания, индексирани в Scopus или Web of Science
    4. Hashim, Y. & Shakib, M.N. 2020, "A new factor for fabrication technologies evaluation for silicon nanowire transistors", Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 5, pp. 2597-2605. - 2020 - в издания, индексирани в Scopus или Web of Science
    5. Jakhar, P., Kumar, A., Das, M. & Rajagopalan, P. 2021, Various aspects of mosfet technology for 5g communications. - 2021 - в издания, индексирани в Scopus или Web of Science
    6. Shafi, N., et al. "Virtually Doped Schottky Buried Metal Layer Planar Junctionless FET for SCE Suppression at Sub-28nm Technology Nodes: Design, Simulation and Performance Investigation." Silicon, 2021. SCOPUS, www.scopus.com, doi:10.1007/s12633-021-01242-w. - 2021 - в издания, индексирани в Scopus или Web of Science
    7. Peranantham, P. & Jeyachandran, Y.L. 2021, "Sub-2 nm boron doping in silicon using novel ultra-thin SiO2film produced by sol-gel dip coating as a capping layer", Semiconductor Science and Technology, vol. 36, no. 7. - 2021 - в издания, индексирани в Scopus или Web of Science

    Вид: публикация в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus