Autors: Venkov, G. P., Georgiev V. S. Title: Symmetry and uniqueness of minimizers of Hartree type equations with external Coulomb potential Keywords: Symmetry, uniqueness, ground states, Hartree equation, exter References Issue
|
Цитирания (Citation/s):
1. Wang, J., & Shi, J. Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction. Calculus of Variations and Partial Differential Equations, 56(6), 168. - 2017 - в издания, индексирани в Scopus и/или Web of Science
2. Sreenadh, K., and T. Mukherjee. Critical Growth Elliptic Problems with Choquard Type Nonlinearity: A Survey. Mathematical Modelling, Optimization, Analytic and Numerical Solutions. Springer, Singapore, 197-229. - 2020 - в издания, индексирани в Scopus и/или Web of Science
3. Wang, J., Zhao, T., & Xiao, L. Existence and asymptotical behavior of the minimizer of Hartree type equation with periodic potentials. Complex Variables and Elliptic Equations, 65(5), 740-764. - 2020 - в издания, индексирани в Scopus и/или Web of Science
4. Wang, Jun, Qiuping Geng, and Maochun Zhu. Existence of the normalized solutions to the nonlocal elliptic system with partial confinement. Discrete & Continuous Dynamical Systems-A 39.4, 2187. - 2019 - в издания, индексирани в Scopus и/или Web of Science
5. Xiao, L., Geng, Q., Wang, J., & Zhu, M. Existence and stability of standing waves for the Choquard equation with partial confinement. Topological Methods in Nonlinear Analysis, 55, 2, 451-474. - 2020 - в издания, индексирани в Scopus и/или Web of Science
6. Wang, C. Existence of Multiple Normalized Solutions for the Coupled Nonlocal Elliptic System. International Journal of Nonlinear Science, 29(1), 12-25. - 2020 - в издания, индексирани в Scopus и/или Web of Science
7. Wang, J. (2021). Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction. Advances in Nonlinear Analysis, 11(1), 385-416. - 2021 - в издания, индексирани в Scopus и/или Web of Science
8. Wang J. (2021) Existence of normalized solutions for the coupled Hartree–Fock type system, Mathematische Nachrichten, https://doi.org/10.1002/mana.201900230 - 2021 - в издания, индексирани в Scopus и/или Web of Science
9. Geng, Q., Dong, Y. and Wang, J. (2022) Existence and multiplicity of nontrivial solutions of weakly coupled nonlinear Hartree type elliptic system, Zeitschrift für angewandte Mathematik und Physik 73(2). - 2022 - в издания, индексирани в Scopus и/или Web of Science
10. Wang, J. (2022). Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction. Advances in Nonlinear Analysis, 11(1), 385-416. - 2022 - в издания, индексирани в Scopus и/или Web of Science
11. Wang, J. Classification and qualitative analysis of positive solutions of the nonlinear Hartree type system. Math. Z. 306, 5 (2024). https://doi.org/10.1007/s00209-023-03403-6 - 2024 - в издания, индексирани в Scopus и/или Web of Science
12. Liu, B. (2014). Ground States for the Schrödinger Systems with Harmonic Potential and Combined Power-Type Nonlinearities. In Abstract and Applied Analysis (Vol. 2014). Hindawi. - 2014 - в издания, индексирани в Scopus и/или Web of Science
13. Geng, Q., Tu, Y., & Wang, J. (2022). Existence and multiplicity of the positive normalized solutions to the coupled Hartree–Fock type nonlocal elliptic system. Journal of Fixed Point Theory and Applications, 24(4), 83. - 2022 - в издания, индексирани в Scopus и/или Web of Science
14. Kawohl, B., & Krömer, S. (2012). Uniqueness and symmetry of minimizers of Hartree type equations with external Coulomb potential. Advances in Calculus of Variations, 5(4), 427-432. - 2012 - в издания, индексирани в Scopus и/или Web of Science
15. Hajaiej, H. (2014). Characterization of the orbit of standing waves of Hartree-type equations with external Coulomb potential. Asymptot. Anal., 87(1-2), 57-64. - 2014 - в издания, индексирани в Scopus и/или Web of Science
16. Yu Y., Sang Y., EXISTENCE AND ASYMPTOTIC BEHAVIOR OF NORMALIZED GROUND STATES FOR CRITICAL COUPLED CHOQUARD SYSTEMS, 2025, Journal of Nonlinear and Variational Analysis, issue 2, vol. 9, pp. 197-228, DOI 10.23952/jnva.9.2025.2.03, issn 25606921, eissn 25606778 - 2025 - в издания, индексирани в Scopus
Вид: пленарен доклад в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus