Autors: Venkov, G. P., Genev, H. G. Title: Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation Keywords: Solitons, blow-up solutions, Schrödinger-Hartree equation References Issue
|
Цитирания (Citation/s):
1. Moroz, V., & Van Schaftingen, J. A guide to the Choquard equation. Journal of Fixed Point Theory and Applications, 19(1), 773-813. - 2017 - в издания, индексирани в Scopus и/или Web of Science
2. Feng, B. Sharp threshold of global existence and instability of standing wave for the Schrödinger–Hartree equation with a harmonic potential. Nonlinear Analysis: Real World Applications, 31, 132-145. - 2016 - в издания, индексирани в Scopus и/или Web of Science
3. Ye, H. Mass minimizers and concentration for nonlinear Choquard equations in RN. Topological Methods in Nonlinear Analysis, 48(2), 393-417. - 2016 - в издания, индексирани в Scopus и/или Web of Science
4. Yang Lingyan, Li Xiaoguang, Chen Ying, A Sharp Threshold of Blow-Up of a Class of Schrödinger-Hartree Equations. ACTA MATHEMATICA SCIENTIA, Vol. 36, Issue (6): 1117-1123. - 2016 - в издания, индексирани в Scopus и/или Web of Science
5. • Wang, X., Sun, X., & Lv, W. Orbital stability of generalized Choquard equation. Boundary Value Problems, 2016(1), 190. - 2016 - в издания, индексирани в Scopus и/или Web of Science
6. Bonheure, D., Cingolani, S., & Van Schaftingen, J. The logarithmic Choquard equation: sharp asymptotics and nondegeneracy of the groundstate. Journal of Functional Analysis, 272(12), 5255-5281. - 2017 - в издания, индексирани в Scopus и/или Web of Science
7. Feng, B., & Zhang, H. Stability of standing waves for the fractional Schrödinger–Hartree equation. Journal of Mathematical Analysis and Applications, 460(1), 352-364. - 2018 - в издания, индексирани в Scopus и/или Web of Science
8. Georgiev, V., & Stefanov, A. On the classification of the spectrally stable standing waves of the Hartree problem. Physica D: Nonlinear Phenomena, 370, 29-39. - 2018 - в издания, индексирани в Scopus и/или Web of Science
9. Shi, C., & Liu, K. Dynamics of blow-up solutions for the Schrödinger–Choquard equation. Boundary Value Problems, 2018(1), 64. - 2018 - в издания, индексирани в Scopus и/или Web of Science
10. Chen, Sitong, and Xianhua Tang. Ground state solutions of Schrödinger–Poisson systems with variable potential and convolution nonlinearity. Journal of Mathematical Analysis and Applications 473.1, 87-111. - 2019 - в издания, индексирани в Scopus и/или Web of Science
11. Luo, Huxiao. Ground state solutions of Pohoz̆aev type and Nehari type for a class of nonlinear Choquard equations. Journal of Mathematical Analysis and Applications 467.2, 842-862. - 2018 - в издания, индексирани в Scopus и/или Web of Science
12. Van Schaftingen, Jean, and Jiankang Xia. Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent. Journal of Mathematical Analysis and Applications 464.2, 1184-1202. - 2018 - в издания, индексирани в Scopus и/или Web of Science
13. Chen, Sitong, Binlin Zhang, and Xianhua Tang. Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Advances in Nonlinear Analysis 9.1, 148-167. - 2019 - в издания, индексирани в Scopus и/или Web of Science
14. Saanouni, Tarek. A note on the fractional Schrödinger equation of Choquard type. Journal of Mathematical Analysis and Applications 470.2, 1004-1029. - 2019 - в издания, индексирани в Scopus и/или Web of Science
15. Ao, Yong. Existence of solutions for a class of nonlinear Choquard equations with critical growth. Applicable Analysis, 1-17. - 2019 - в издания, индексирани в Scopus и/или Web of Science
16. Saanouni, Tarek. Strong instability of standing waves for the fractional Choquard equation. Journal of Mathematical Physics 59.8, 081509. - 2018 - в издания, индексирани в Scopus и/или Web of Science
17. Liu, Kun, and Cunqin Shi. Existence of stable standing waves for the Schrödinger–Choquard equation. Boundary Value Problems 2018.1, 1-11. - 2018 - в издания, индексирани в Scopus и/или Web of Science
18. Li, Fuyi, et al., Ground state for Choquard equation with doubly critical growth nonlinearity, Electronic Journal of Qualitative Theory of Differential Equations 2019.33, 1-15. - 2019 - в издания, индексирани в Scopus и/или Web of Science
19. Alves, Claudianor O., Nobrega, A. B. and Lima, R.N. Bifurcation properties for a class of Choquard equation in whole ℝ3. Glasgow Mathematical Journal, 1-13. - 2019 - в издания, индексирани в Scopus и/или Web of Science
20. Alharbi, Majed Ghazi, and Tarek Saanouni. Sharp threshold of global well-posedness vs finite time blow-up for a class of inhomogeneous Choquard equations. Journal of Mathematical Physics 60.8, 081514. - 2019 - в издания, индексирани в Scopus и/или Web of Science
21. Li, Xiaoliang, and Baiyu Liu. Finite time blow-up and global existence for the nonlocal complex Ginzburg–Landau equation. Journal of Mathematical Analysis and Applications 466.1, 961-985. - 2018 - в издания, индексирани в Scopus и/или Web of Science
22. Jin, H., Liu, W., Zhang, H., & Zhang, J. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis 19.1, 123. - 2019 - в издания, индексирани в Scopus и/или Web of Science
23. Li, Xinfu. Global existence and blowup for Choquard equations with an inverse-square potential. Journal of Differential Equations, 268, 8, 4276-4319 - 2020 - в издания, индексирани в Scopus и/или Web of Science
24. Saanouni, Tarek. Scattering threshold for the focusing Choquard equation. Nonlinear Differential Equations and Applications NoDEA 26.6, 41. - 2019 - в издания, индексирани в Scopus и/или Web of Science
25. Wang, Yongbin, and Binhua Feng. Sharp thresholds of blow-up and global existence for the Schrödinger equation with combined power-type and Choquard-type nonlinearities. Boundary Value Problems 2019.1, 1-17. - 2019 - в издания, индексирани в Scopus и/или Web of Science
26. Jin, H., Liu, W., Zhang, H., & Zhang, J. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 19(1), 123. - 2020 - в издания, индексирани в Scopus и/или Web of Science
27. Saanouni, T. Scattering versus blow-up beyond the threshold for the focusing Choquard equation. Journal of Mathematical Analysis and Applications, 492(1), 124436. - 2020 - в издания, индексирани в Scopus и/или Web of Science
28. Chergui, L. Well-posedness and blow-up of Virial type for some fractional inhomogeneous Choquard equations. Applicable Analysis, 1-30. - 2020 - в издания, индексирани в Scopus и/или Web of Science
29. Wang, G., Yang, Z., Agarwal, R. P., & Zhang, L. Study on a class of Schrödinger elliptic system involving a nonlinear operator. Nonlinear Analysis: Modelling and Control, 25(5), 846-859. - 2020 - в издания, индексирани в Scopus и/или Web of Science
30. Xie, Y., Su, J., & Mei, L. Blowup results and concentration in focusing Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems-A, 40(8), 5001. - 2020 - в издания, индексирани в Scopus и/или Web of Science
31. Chen, S., Zhang, B., & Tang, X. (2020). Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Advances in Nonlinear Analysis, 9(1), 148-167. - 2020 - в издания, индексирани в Scopus и/или Web of Science
32. Dinh, V. D. (2020). Blow-up behavior of prescribed mass minimizers for nonlinear Choquard equations with singular potentials. Monatshefte für Mathematik, 192, 551-589. - 2020 - в издания, индексирани в Scopus и/или Web of Science
33. Ao, Y. (2021). Existence of solutions for a class of nonlinear Choquard equations with critical growth. Applicable Analysis, 100(3), 465-481. - 2021 - в издания, индексирани в Scopus и/или Web of Science
34. Chergui, L. (2021). Remarks on damped Schrödinger equation of Choquard type. Opuscula Mathematica, 41(4), 465-488. - 2021 - в издания, индексирани в Scopus и/или Web of Science
35. Lei, C. Y., & Zhang, B. (2021). Ground state solutions for nonlinear Choquard equations with doubly critical exponents. Applied Mathematics Letters, 107715. - 2021 - в издания, индексирани в Scopus и/или Web of Science
36. Saanouni, T. (2021). A note on Choquard equations in two space dimensions. Boletín de la Sociedad Matemática Mexicana, 27(1), 1-29. - 2021 - в издания, индексирани в Scopus и/или Web of Science
37. Ficek, F. (2021) Schrödinger-Newton-Hooke system in higher dimensions: Stationary states, Physical Review D, 103, 104062 - 2021 - в издания, индексирани в Scopus и/или Web of Science
38. Chergui, L. (2022). Well-posedness and blow-up of Virial type for some fractional inhomogeneous Choquard equations. Applicable Analysis, 101(8), 2966-2995. - 2022 - в издания, индексирани в Scopus и/или Web of Science
39. Lei, C. Y., & Zhang, B. (2022). Ground state solutions for nonlinear Choquard equations with doubly critical exponents. Applied Mathematics Letters, 125, 107715. - 2022 - в издания, индексирани в Scopus и/или Web of Science
40. Ichimiya, M., & Nakamura, M. (2023). On the Cauchy problem for the Hartree type semilinear Schrödinger equation in the de Sitter spacetime. Evolution Equations and Control Theory, Volume 12, Issue 6: 1602-1628. Doi: 10.3934/eect.2023028. - 2023 - в издания, индексирани в Scopus и/или Web of Science
41. Tang, N., & Zhang, J. (2023). Energy criteria of global existence for a class of Hartree equations with Coulomb potential. Mathematics in Applied Sciences and Engineering, 4(1), 61-78. - 2023 - в издания, индексирани в Scopus и/или Web of Science
42. Cai, M., Jian, H., & Gong, M. (2024). Global existence, blow-up and stability of standing waves for the Schrödinger-Choquard equation with harmonic potential. AIMS Mathematics, 9(1), 495-520. - 2024 - в издания, индексирани в Scopus и/или Web of Science
43. Chergui, L. (2024). Wellposedness and Scattering for Some Bi-inhomogeneous Schrödinger–Choquard Equation with Linear Damping. Differential Equations and Dynamical Systems, 1-22. - 2024 - в издания, индексирани в Scopus и/или Web of Science
44. Jian, H., & Gong, M. (2023). Sharp threshold of global existence and mass concentration for the Schrödinger-Hartree equation with anisotropic harmonic confinement. Advances in Mathematical Physics, 4316819, https://doi.org/10.1155/2023/4316819 - 2023 - в издания, индексирани в Scopus и/или Web of Science
45. Zhang, B., & Zhang, W. (2024). Localized nodal solutions for semiclassical Choquard equations with critical growth. Electronic Journal of Differential Equations, 1, 19-37. - 2024 - в издания, индексирани в Scopus и/или Web of Science
46. Zhang, H., Su, X., & Liu, S. (2024). Global existence and blowup of solutions to a class of wave equations with Hartree type nonlinearity. Nonlinearity, 37(6), 065011. - 2024 - в издания, индексирани в Scopus и/или Web of Science
47. Ding, Y., & Wang, H. Y. (2024). Normalized Solutions to Schrödinger Equations with Critical Exponent and Mixed Nonlocal Nonlinearities. The Journal of Geometric Analysis, 34(7), 215. - 2024 - в издания, индексирани в Scopus и/или Web of Science
48. Zhang, M., Pan, J., & Zhang, J. (2024). The Blow-up Dynamics for the L2-Critical Hartree Equation with Harmonic Potential. Journal of Nonlinear Modeling and Analysis, 6(3), 589-601. - 2024 - в издания, индексирани в Scopus и/или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus