Autors: Popov, D. A., Fikiin, K. A., Stankov, B. N., Alvarez, G., Youbi-Idrissi, M., Damas, A., Evans, J., Brown, T.
Title: Cryogenic heat exchangers for process cooling and renewable energy storage: A review
Keywords: cryogenics, energy storage, heat exchanger, heat transfer, m

Abstract: The cryogenic industry has experienced remarkable expansion in recent years. Cryogenic technologies are commonly used for industrial processes, such as air separation and natural gas liquefaction. Another recently proposed and tested cryogenic application is Liquid Air Energy Storage (LAES). This technology allows for large-scale long-duration storage of renewable energy in the power grid. One major advantage over alternative storage techniques is the possibility of efficient integration with important industrial processes, e.g., refrigerated warehousing of food and pharmaceuticals. Heat exchangers are among the most important components determining the energy efficiency of cryogenic systems. They also constitute the necessary interface between a LAES system and the industrial process utilizing the available cooling effect. The present review aims to familiarise energy professionals and stakeholders with the latest achievements, innovations, and trends in the field of cryogenic..

References

    Issue

    Applied Thermal Engineering, vol. 153, pp. 275-290, 2019, Netherlands, Elsevier, DOI: 10.1016/j.applthermaleng.2019.02.106

    Цитирания (Citation/s):
    1. Ahmad, F. N., Sazali, N., & Othman, M. H. D. (2019). Review on development of Oxygen/Nitrogen separations technologies. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 63(2), 249-259. - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Mustaffa, M. M., & Sazali, N. (2020). A short review on novel membranes for gas separation. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 70(2), 1-11. doi:10.37934/ARFMTS.70.2.111 - 2020 - в издания, индексирани в Scopus или Web of Science
    3. Tang, L. H., Pan, J., & Sundén, B. (2020). Investigation on Thermal-Hydraulic Performance in a Printed Circuit Heat Exchanger with Airfoil and Vortex Generator Fins for Supercritical Liquefied Natural Gas. Heat Transfer Engineering. doi:10.1080/01457632.2020.1744244 - 2020 - в издания, индексирани в Scopus или Web of Science
    4. Tang, L., Cui, L., & Sundén, B. (2020). Optimization of fin configurations and layouts in a printed circuit heat exchanger for supercritical liquefied natural gas near the pseudo-critical temperature. Applied Thermal Engineering, 172. doi:10.1016/j.applthermaleng.2020.115131 - 2020 - в издания, индексирани в Scopus или Web of Science
    5. Saggu, M.H., Sheikh, N.A., Niazi, U.M., Irfan, M., Glowacz, A., Legutko, S. (2020). Improved analysis on the fin reliability of a plate fin heat exchanger for usage in lng applications. Energies, 13 (14). DOI: 10.3390/en13143624 - 2020 - в издания, индексирани в Scopus или Web of Science
    6. Tang, L., Cao, Z., & Pan, J. (2020). Investigation on the thermal-hydraulic performance in a PCHE with airfoil fins for supercritical LNG near the pseudo-critical temperature under the rolling condition. Applied Thermal Engineering, 175. doi:10.1016/j.applthermaleng.2020.115404 - 2020 - в издания, индексирани в Scopus или Web of Science
    7. Sazali, N. (2020). Emerging technologies by hydrogen: A review. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2020.05.021 - 2020 - в издания, индексирани в Scopus или Web of Science
    8. He, T., Lin, W. (2020) Design and optimization of integrated single mixed refrigerant processes for coproduction of LNG and high-purity ethane. International Journal of Refrigeration, 119, pp. 216-226. doi: 10.1016/j.ijrefrig.2020.06.033 - 2020 - в издания, индексирани в Scopus или Web of Science
    9. Han, R., Zou, Z., Ge, R., Chang, Z., Zhang, J., Xu, M., Ye, R., Zhu, K., Zhang, L., Zhao, T., Sun, L., Zhang, X., Sang, M., Li, S. (2020). Design optimization, construction and testing of 2 K Joule-Thomson heat exchanger for a superfluid helium cryogenic system. Applied Thermal Engineering, 180. DOI: 10.1016/j.applthermaleng.2020.115774 - 2020 - в издания, индексирани в Scopus или Web of Science
    10. Mostafazade Abolmaali, A., Afshin, H. (2020). Numerical study of heat transfer between shell-side fluid and shell wall in the spiral-wound heat exchangers. International Journal of Refrigeration, 120, pp. 285-295. DOI: 10.1016/j.ijrefrig.2020.08.010 - 2020 - в издания, индексирани в Scopus или Web of Science
    11. Wang, Y., Lu, T., Drögemüller, P., Yu, Q., Ding, Y., Li, Y. (2020). Enhancing deteriorated heat transfer of supercritical nitrogen in a vertical tube with wire matrix insert. International Journal of Heat and Mass Transfer, 162. DOI: 10.1016/j.ijheatmasstransfer.2020.120358 - 2020 - в издания, индексирани в Scopus или Web of Science
    12. He, T., Lin, W. (2020). Energy saving research of natural gas liquefaction plant based on waste heat utilization of gas turbine exhaust. Energy Conversion and Management, 225. DOI: 10.1016/j.enconman.2020.113468 - 2020 - в издания, индексирани в Scopus или Web of Science
    13. Rößler, F., Thomas, I., Freko, P., Zander, H.-J., Rehfeldt, S., Klein, H. (2020). Dynamic simulation with digital twins of heat exchangers. Proceedings of the AIChE Annual Meeting, 2020-November. ISBN: 978-081691114-1. - 2020 - в издания, индексирани в Scopus или Web of Science
    14. Ebrahimi, A., Ghorbani, B., Taghavi, M. (2021). Pinch and exergy evaluation of a liquid nitrogen cryogenic energy storage structure using air separation unit, liquefaction hybrid process, and Kalina power cycle. Journal of Cleaner Production, 305. DOI: 10.1016/j.jclepro.2021.127226. - 2021 - в издания, индексирани в Scopus или Web of Science
    15. Wang, X., Kang, W., Niu, X., Wang, X., Wang, L. (2021). An investigation on thermal conductivity of constructal-filler polymer composites. International Communications in Heat and Mass Transfer, 126. DOI: 10.1016/j.icheatmasstransfer.2021.105411. - 2021 - в издания, индексирани в Scopus или Web of Science
    16. Wang, X., Niu, X., Kang, W., Wang, X., Wang, L. (2021). Enhanced Effective Thermal Conductivity of Composite Materials by Incorporating Constructal Fillers. International Journal of Thermophysics, 42 (7). DOI: 10.1007/s10765-021-02862-5. - 2021 - в издания, индексирани в Scopus или Web of Science
    17. Howard, J., Hasan, N., Knudsen, P. (2021). Thermal-Hydraulic Characterization of Shell-Side Flow in a Cryogenic Coiled Finned-Tube Heat Exchanger. Journal of Heat Transfer, 143 (5). DOI: 10.1115/1.4049961 - 2021 - в издания, индексирани в Scopus или Web of Science
    18. Arnaiz del Pozo, C., Jiménez Álvaro, Á., Rodríguez Martín, J., López Paniagua, I. (2021). Efficiency evaluation of closed and open cycle pure refrigerant cascade natural gas liquefaction process through exergy analysis. Journal of Natural Gas Science and Engineering, 89. DOI: 10.1016/j.jngse.2021.103868. - 2021 - в издания, индексирани в Scopus или Web of Science
    19. Park, J., Lim, H., Rhee, G.H., Karng, S.W. (2021). Catalyst filled heat exchanger for hydrogen liquefaction. International Journal of Heat and Mass Transfer, 170. DOI: 10.1016/j.ijheatmasstransfer.2021.121007. - 2021 - в издания, индексирани в Scopus или Web of Science
    20. Borri, E., Tafone, A., Romagnoli, A., Comodi, G. (2021). A review on liquid air energy storage: History, state of the art and recent developments. Renewable and Sustainable Energy Reviews, 137. DOI: 10.1016/j.rser.2020.110572. - 2021 - в издания, индексирани в Scopus или Web of Science
    21. Hu, H., Li, J., Xie, Y., Chen, Y. (2021). Experimental investigation on heat transfer characteristics of flow boiling in zigzag channels of printed circuit heat exchangers. International Journal of Heat and Mass Transfer, 165. DOI: 10.1016/j.ijheatmasstransfer.2020.120712. - 2021 - в издания, индексирани в Scopus или Web of Science
    22. Cai, Y., Yang, F., Wu, L., Shu, Y., Qu, G., Fakhri, A., Kumar Gupta, V. (2021). Hydrothermal-ultrasonic synthesis of CuO nanorods and CuWO4 nanoparticles for catalytic reduction, photocatalysis activity, and antibacterial properties. Materials Chemistry and Physics, 258. DOI: 10.1016/j.matchemphys.2020.123919 - 2021 - в издания, индексирани в Scopus или Web of Science
    23. Yang, S., Zhao, Z., Zhang, Y., Chen, Z., Yang, M. (2021). Effects of fin arrangements on thermal hydraulic performance of supercritical nitrogen in printed circuit heat exchanger (2021) Processes, 9 (5). DOI: 10.3390/pr9050861. - 2021 - в издания, индексирани в Scopus или Web of Science
    24. Cavalcanti, E. J. C., & Carvalho, M. (2021). Tackling dissipative components based on the speco approach: A cryogenic heat exchanger used in natural gas liquefaction. Energies, 14(20) doi:10.3390/en14206850 - 2021 - в издания, индексирани в Scopus или Web of Science
    25. Hu, H., Li, J., Chen, Y., & Xie, Y. (2021). Measurement and correlation for two-phase frictional pressure drop characteristics of flow boiling in printed circuit heat exchangers. [Mesurage et corrélation des caractéristiques de la chute de pression par frottement diphasique de l'écoulement en ébullition dans les échangeurs de chaleur à circuit imprimé] International Journal of Refrigeration, 129, 69-77. doi:10.1016/j.ijrefrig.2021.04.023 - 2021 - в издания, индексирани в Scopus или Web of Science
    26. Vecchi, A., Li, Y., Ding, Y., Mancarella, P., & Sciacovelli, A. (2021). Liquid air energy storage (LAES): A review on technology state-of-the-art, integration pathways and future perspectives. Advances in Applied Energy, 3 doi:10.1016/j.adapen.2021.100047 - 2021 - в издания, индексирани в Scopus или Web of Science
    27. Al Ghafri, S. Z., Munro, S., Cardella, U., Funke, T., Notardonato, W., Trusler, J. P. M., . . . May, E. F. (2022). Hydrogen liquefaction: A review of the fundamental physics, engineering practice and future opportunities. Energy and Environmental Science, 15(7), 2690-2731. doi:10.1039/d2ee00099g - 2022 - в издания, индексирани в Scopus или Web of Science
    28. Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. M. (2022). The effect of heat exchanger design on heat transfer rate and temperature distribution. Emerging Science Journal, 6(1), 128-137. doi:10.28991/ESJ-2022-06-01-010 - 2022 - в издания, индексирани в Scopus или Web of Science
    29. Baek, S., Lee, J., Kim, K. -., Shin, D., Lim, H., Kim, J., . . . Ko, J. (2022). Thermal performance evaluation and analysis of helium heat exchanger for cryogenic propellant launch vehicle. Cryogenics, 124 doi:10.1016/j.cryogenics.2022.103492 - 2022 - в издания, индексирани в Scopus или Web of Science
    30. Ionita, C., Vasilescu, E. E., Pop, H., Alqaisy, S. J. S., & Uta, I. (2022). EXERGY ANALYSIS OF LIQUID AIR ENERGY STORAGE SYSTEM BASED ON LINDE CYCLE. [ANALIZA EXERGETICĂ A UNUI SISTEM DE STOCARE A ENERGIEI DIN AER LICHID BAZAT PE CICLUL LINDE] INMATEH - Agricultural Engineering, 67(2), 543-552. doi:10.35633/inmateh-67-53 - 2022 - в издания, индексирани в Scopus или Web of Science
    31. Korobiichuk, I., Mel’nick, V., Shybetskyi, V., Kostyk, S., & Kalinina, M. (2022). Optimization of heat exchange plate geometry by modeling physical processes using CAD. Energies, 15(4) doi:10.3390/en15041430 - 2022 - в издания, индексирани в Scopus или Web of Science
    32. Kubo, Y., Yamada, S., Murakawa, H., & Asano, H. (2022). Correlation between pressure loss and heat transfer coefficient in boiling flows in printed circuit heat exchangers with semicircular and circular mini-channels. Applied Thermal Engineering, 204 doi:10.1016/j.applthermaleng.2021.117963 - 2022 - в издания, индексирани в Scopus или Web of Science
    33. Liang, T., Vecchi, A., Knobloch, K., Sciacovelli, A., Engelbrecht, K., Li, Y., & Ding, Y. (2022). Key components for carnot battery: Technology review, technical barriers and selection criteria. Renewable and Sustainable Energy Reviews, 163 doi:10.1016/j.rser.2022.112478 - 2022 - в издания, индексирани в Scopus или Web of Science
    34. Mora, C. A., & Orjuela, A. (2022). Modeling, validation and exergy evaluation of a thermally-integrated industrial cryogenic air separation plant in colombia. Chemical Engineering Research and Design, 185, 73-86. doi:10.1016/j.cherd.2022.07.005 - 2022 - в издания, индексирани в Scopus или Web of Science
    35. Nandakishora, Y., Sahoo, R. K., Murugan, S., & Gu, S. (2022). Rating and performance of plate fin heat exchanger used for cryogenic separation of CO2. International Journal of Energy Research, 46(15), 23449-23464. doi:10.1002/er.8641 - 2022 - в издания, индексирани в Scopus или Web of Science
    36. Nutor, R. K., Cao, Q., Wang, X., Ding, S., Zhang, D., & Jiang, J. -. (2022). Accelerated emergence of CoNi-based medium-entropy alloys with emphasis on their mechanical properties. Current Opinion in Solid State and Materials Science, 26(6) doi:10.1016/j.cossms.2022.101032 - 2022 - в издания, индексирани в Scopus или Web of Science
    37. Park, J., Mun, H., Kim, J., & Lee, I. (2022). Advanced natural gas liquefaction process on LNG supply chain with liquid air: From design to thermodynamic and techno-economic analyses. Energy Conversion and Management, 252 doi:10.1016/j.enconman.2021.115107 - 2022 - в издания, индексирани в Scopus или Web of Science
    38. Pinto Menezes, M. V., Vilasboas, I. F., & Da Silva, J. A. M. (2022). Liquid air energy storage system (LAES) assisted by cryogenic air rankine cycle (ARC). Energies, 15(8) doi:10.3390/en15082730 - 2022 - в издания, индексирани в Scopus или Web of Science
    39. Pracht, S., Will, J., Klöppel, S., Funke, T., Quack, H., & Haberstroh, C. (2022). Experimental and numerical study of a 3D-printed aluminium cryogenic heat exchanger for compact brayton refrigerators. Cryogenics, 123 doi:10.1016/j.cryogenics.2021.103418 - 2022 - в издания, индексирани в Scopus или Web of Science
    40. Rawat, A., Benyathiar, P., Ozadali, F., & Mishra, D. K. (2022). Novel rapid cooling system design and modeling for continuous flow food processing systems. LWT, 165 doi:10.1016/j.lwt.2022.113752 - 2022 - в издания, индексирани в Scopus или Web of Science
    41. Rößler, F., Freko, P., Thomas, I., Kender, R., Rehfeldt, S., & Klein, H. (2022). A modular-hierarchical framework for the pressure-driven simulation of heat exchanger dynamics. Computers and Chemical Engineering, 163 doi:10.1016/j.compchemeng.2022.107821 - 2022 - в издания, индексирани в Scopus или Web of Science
    42. Tang, L. -., Yang, B. -., & Li, W. -. (2022). Effect of axial heat conduction on thermal performance in a printed circuit heat exchanger. [轴向导热对印刷电路板式换热器换热性能影响] Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 43(4), 1055-1062 - 2022 - в издания, индексирани в Scopus или Web of Science
    43. Tang, L. -., Yang, B. -., Pan, J., & Sundén, B. (2022). Thermal performance analysis in a zigzag channel printed circuit heat exchanger under different conditions. Heat Transfer Engineering, 43(7), 567-583. doi:10.1080/01457632.2021.1896832 - 2022 - в издания, индексирани в Scopus или Web of Science
    44. Tian, Y., Long, C., & Tang, L. (2022). STUDY ON THERMAL-HYDRAULIC PERFORMANCE OF THE PRINTED CIRCUIT HEAT EXCHANGER WITH AIRFOIL FINS FOR SUPERCRITICAL LIQUEFIED NATURAL GAS. Frontiers in Heat and Mass Transfer, 19 doi:10.5098/hmt.19.18 - 2022 - в издания, индексирани в Scopus или Web of Science
    45. Uwitonze, H., Chaniago, Y. D., & Lim, H. (2022). Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant. Energy, 254 doi:10.1016/j.energy.2022.124373 - 2022 - в издания, индексирани в Scopus или Web of Science
    46. Xie, L., Zhuang, D., Li, Z., & Ding, G. (2022). Technical characteristics and development trend of printed circuit heat exchanger applied in floating liquefied natural gas. Frontiers in Energy Research, 10 doi:10.3389/fenrg.2022.885607 - 2022 - в издания, индексирани в Scopus или Web of Science
    47. Zhao, B., Zhang, T., Tan, J., Zhao, Y., Xue, R., Tan, H., . . . Dang, H. (2022). Design and optimization of the four-stage recuperative coiled tube-in-tube heat exchanger for a 1.8 K hybrid cryocooler. Cryogenics, 126 doi:10.1016/j.cryogenics.2022.103535 - 2022 - в издания, индексирани в Scopus или Web of Science
    48. Font-Palma, C. Cann, D., & Udemu, C. (2021) Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. C-Journal of Carbon Research, 7(3), DOI: 10.3390/c7030058 - 2021 - в издания, индексирани в Scopus или Web of Science
    49. Hodzhaeva, M.S., Golikov, O.Y., Sokolov, D.Y., & Yerezhep, D. (2022) Research of the temperature dynamics change of a universal cryogenic surface using the finite element method. Recent Contributions to Physics, 60(8), 66-74, DOI: 10.26577/RCPh.2022.v80.i1.08 - 2022 - в издания, индексирани в Scopus или Web of Science
    50. Alyaseen, N. O. M., Mehrzad, S., & Saffarian, M. R. (2023). An investigation of multistream plate-fin heat exchanger modelling and design: A review. Kerntechnik, doi:10.1515/kern-2022-0119 - 2023 - в издания, индексирани в Scopus или Web of Science
    51. Eshgarf, H., Nadooshan, A. A., & Raisi, A. (2023). A review of multi-phase and single-phase models in the numerical simulation of nanofluid flow in heat exchangers. Engineering Analysis with Boundary Elements, 146, 910-927. doi:10.1016/j.enganabound.2022.10.013 - 2023 - в издания, индексирани в Scopus или Web of Science
    52. Hu, H., Li, Y., & Li, J. (2023). Experimental investigation on flow boiling characteristics in zigzag channels under different sloshing conditions. Applied Thermal Engineering, 230 doi:10.1016/j.applthermaleng.2023.120780 - 2023 - в издания, индексирани в Scopus или Web of Science
    53. Kang, S. Y., & Jang, S. P. (2023). Performance analysis model of a low-pressure cryogenic vaporizer for liquified hydrogen supply. [액체수소 공급용 저압 극저온 기화기 성능해석 모델] Transactions of the Korean Society of Mechanical Engineers, B, 47(1), 7-13. doi:10.3795/KSME-B.2023.47.1.007 - 2023 - в издания, индексирани в Scopus или Web of Science
    54. Kharadi, F., Karthikeyan, A., Bhojwani, V., Dixit, P., Kanu, N. J., & Jain, N. (2023). Experimental study of the operating parameters on the performance of a single-stage stirling cryocooler cooling infrared sensor for space application. Aircraft Engineering and Aerospace Technology, doi:10.1108/AEAT-02-2023-0051 - 2023 - в издания, индексирани в Scopus или Web of Science
    55. Kuo, G. -., Xie, J. -., & Chueh, C. -. (2023). Numerical thermal–hydraulic analysis and multiobjective design optimization of a printed circuit heat exchanger with airfoil overlap fin channels. Engineering Reports, doi:10.1002/eng2.12719 - 2023 - в издания, индексирани в Scopus или Web of Science
    56. Liang, T., Zhang, T., Lin, X., Alessio, T., Legrand, M., He, X., . . . Ding, Y. (2023). Liquid air energy storage technology: A comprehensive review of research, development and deployment. Progress in Energy, 5(1) doi:10.1088/2516-1083/aca26a - 2023 - в издания, индексирани в Scopus или Web of Science
    57. O'Neill, K. T., Al Ghafri, S., da Silva Falcão, B., Tang, L., Kozielski, K., & Johns, M. L. (2023). Hydrogen ortho-para conversion: Process sensitivities and optimisation. Chemical Engineering and Processing - Process Intensification, 184 doi:10.1016/j.cep.2023.109272 - 2023 - в издания, индексирани в Scopus или Web of Science
    58. Petersen, K. J., Rahbarimanesh, S., & Brinkerhoff, J. R. (2023). Progress in physical modelling and numerical simulation of phase transitions in cryogenic pool boiling and cavitation. Applied Mathematical Modelling, 116, 327-349. doi:10.1016/j.apm.2022.11.028 - 2023 - в издания, индексирани в Scopus или Web of Science
    59. Pezzutto, S., Quaglini, G., Riviere, P., Kranzl, L., Novelli, A., Zambito, A., . . . Wilczynski, E. (2023). Process cooling market in europe: Assessment of the final energy consumption for the year 2016. Sustainability (Switzerland), 15(4) doi:10.3390/su15043698 - 2023 - в издания, индексирани в Scopus или Web of Science
    60. Singh, N. S., Stafford, J., & Gao, N. (2023). Dropwise and liquid-jet laminar flow of subcooled water falling over horizontal tube banks. International Journal of Heat and Mass Transfer, 206 doi:10.1016/j.ijheatmasstransfer.2023.123936 - 2023 - в издания, индексирани в Scopus или Web of Science
    61. Woon, K. S., Phuang, Z. X., Taler, J., Varbanov, P. S., Chong, C. T., Klemeš, J. J., & Lee, C. T. (2023). Recent advances in urban green energy development towards carbon emissions neutrality. Energy, 267 doi:10.1016/j.energy.2022.126502 - 2023 - в издания, индексирани в Scopus или Web of Science
    62. Yu, P., Liu, H., Xue, J., Zhang, Y., & Che, D. (2023). Thermo-hydraulic performance of a cryogenic printed circuit heat exchanger for liquid air energy storage. Applied Thermal Engineering, 219 doi:10.1016/j.applthermaleng.2022.119429 - 2023 - в издания, индексирани в Scopus или Web of Science
    63. Tang, L., Tian, Y., Liu, J., Xie, G., Sundén, B. (2023). Investigation on Thermal and Hydraulic Performances in a Printed Circuit Heat Exchanger with Airfoil and Vortex Generating Fins, Heat Transfer Engineering. DOI: 10.1080/01457632.2023.2249729 - 2023 - в издания, индексирани в Scopus или Web of Science
    64. Alyaseen, N.O.M., Mehrzad, S., Saffarian, M.R. (2023). Modeling and Design of a Multistream Plate-Fin Heat Exchanger in the Air Separation Units by Pinch Technology, International Journal of Chemical Engineering. DOI: 10.1155/2023/9204268 - 2023 - в издания, индексирани в Scopus или Web of Science
    65. Di Domenico, V., Tamburrano, P., Distaso, E., Sciatti, F., Amirante, R. (2023). Detailed performance analysis of a novel small-scale biomethane liquefaction plant, Journal of Physics: Conference Series, 2648(1). DOI: 10.1088/1742-6596/2648/1/012014 - 2023 - в издания, индексирани в Scopus или Web of Science
    66. Tamburrano, P., Distaso, E., Salvatori, M., (...), Meschia, M., Amirante, R. (2023). A novel small-scale biomethane liquefaction process: Assessment through a detailed theoretical analysis, Applied Thermal Engineering, 233. DOI: 10.1016/j.applthermaleng.2023.121145 - 2023 - в издания, индексирани в Scopus или Web of Science
    67. Burian, O., Dančová, P. (2023). Compressed Air Energy Storage (CAES) and Liquid Air Energy Storage (LAES) Technologies—A Comparison Review of Technology Possibilities, Processes, 11(11), DOI: 10.3390/pr11113061 - 2023 - в издания, индексирани в Scopus или Web of Science
    68. Huerta, F., & Vesovic, V. (2024). CFD modelling of the non-isobaric evaporation of cryogenic liquids in storage tanks, Applied Energy, 356. DOI: 10.1016/j.apenergy.2023.122420 - 2024 - в издания, индексирани в Scopus или Web of Science
    69. Guo, L., Ji, W., Fan, X., Chen, L., Wang, J. (2024). Experimental analysis of packed bed cold energy storage in the liquid air energy storage system, Journal of Energy Storage, 82. DOI: 10.1016/j.est.2023.110282 - 2024 - в издания, индексирани в Scopus или Web of Science
    70. Liu, X., Zhao, Z., Li, C., Ding, J., Pu, X. (2024). Applied Thermal Engineering, 242. DOI: 10.1016/j.applthermaleng.2024.122424 - 2024 - в издания, индексирани в Scopus или Web of Science
    71. Meng, X.F., Yuan, Q.Y., Li, Y.N., Lin, X.C., Liu, N. (2024). Numerical Analysis of the Thermal-Hydraulic Performance of Supercritical Liquefied Natural Gas in Airfoil Fin PCHEs, JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 16 (1). DOI: 10.1115/1.4063751 - 2024 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science