Autors: Popov, D. A., Fikiin, K. A., Stankov, B. N., Alvarez, G., Youbi-Idrissi, M., Damas, A., Evans, J., Brown, T.
Title: Cryogenic heat exchangers for process cooling and renewable energy storage: A review
Keywords: cryogenics, energy storage, heat exchanger, heat transfer, modeling, optimization

Abstract: The cryogenic industry has experienced remarkable expansion in recent years. Cryogenic technologies are commonly used for industrial processes, such as air separation and natural gas liquefaction. Another recently proposed and tested cryogenic application is Liquid Air Energy Storage (LAES). This technology allows for large-scale long-duration storage of renewable energy in the power grid. One major advantage over alternative storage techniques is the possibility of efficient integration with important industrial processes, e.g., refrigerated warehousing of food and pharmaceuticals. Heat exchangers are among the most important components determining the energy efficiency of cryogenic systems. They also constitute the necessary interface between a LAES system and the industrial process utilizing the available cooling effect. The present review aims to familiarise energy professionals and stakeholders with the latest achievements, innovations, and trends in the field of cryogenic..

References

    Issue

    Applied Thermal Engineering, vol. 153, pp. 275-290, 2019, Netherlands, Elsevier, DOI: 10.1016/j.applthermaleng.2019.02.106

    Цитирания (Citation/s):
    1. Ahmad, F. N., Sazali, N., & Othman, M. H. D. (2019). Review on development of Oxygen/Nitrogen separations technologies. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 63(2), 249-259. - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Mustaffa, M. M., & Sazali, N. (2020). A short review on novel membranes for gas separation. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 70(2), 1-11. doi:10.37934/ARFMTS.70.2.111 - 2020 - в издания, индексирани в Scopus или Web of Science
    3. Tang, L. H., Pan, J., & Sundén, B. (2020). Investigation on Thermal-Hydraulic Performance in a Printed Circuit Heat Exchanger with Airfoil and Vortex Generator Fins for Supercritical Liquefied Natural Gas. Heat Transfer Engineering. doi:10.1080/01457632.2020.1744244 - 2020 - в издания, индексирани в Scopus или Web of Science
    4. Tang, L., Cui, L., & Sundén, B. (2020). Optimization of fin configurations and layouts in a printed circuit heat exchanger for supercritical liquefied natural gas near the pseudo-critical temperature. Applied Thermal Engineering, 172. doi:10.1016/j.applthermaleng.2020.115131 - 2020 - в издания, индексирани в Scopus или Web of Science
    5. Saggu, M.H., Sheikh, N.A., Niazi, U.M., Irfan, M., Glowacz, A., Legutko, S. (2020). Improved analysis on the fin reliability of a plate fin heat exchanger for usage in lng applications. Energies, 13 (14). DOI: 10.3390/en13143624 - 2020 - в издания, индексирани в Scopus или Web of Science
    6. Tang, L., Cao, Z., & Pan, J. (2020). Investigation on the thermal-hydraulic performance in a PCHE with airfoil fins for supercritical LNG near the pseudo-critical temperature under the rolling condition. Applied Thermal Engineering, 175. doi:10.1016/j.applthermaleng.2020.115404 - 2020 - в издания, индексирани в Scopus или Web of Science
    7. Sazali, N. (2020). Emerging technologies by hydrogen: A review. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2020.05.021 - 2020 - в издания, индексирани в Scopus или Web of Science
    8. He, T., Lin, W. (2020) Design and optimization of integrated single mixed refrigerant processes for coproduction of LNG and high-purity ethane. International Journal of Refrigeration, 119, pp. 216-226. doi: 10.1016/j.ijrefrig.2020.06.033 - 2020 - в издания, индексирани в Scopus или Web of Science
    9. Han, R., Zou, Z., Ge, R., Chang, Z., Zhang, J., Xu, M., Ye, R., Zhu, K., Zhang, L., Zhao, T., Sun, L., Zhang, X., Sang, M., Li, S. (2020). Design optimization, construction and testing of 2 K Joule-Thomson heat exchanger for a superfluid helium cryogenic system. Applied Thermal Engineering, 180. DOI: 10.1016/j.applthermaleng.2020.115774 - 2020 - в издания, индексирани в Scopus или Web of Science
    10. Mostafazade Abolmaali, A., Afshin, H. (2020). Numerical study of heat transfer between shell-side fluid and shell wall in the spiral-wound heat exchangers. International Journal of Refrigeration, 120, pp. 285-295. DOI: 10.1016/j.ijrefrig.2020.08.010 - 2020 - в издания, индексирани в Scopus или Web of Science
    11. Wang, Y., Lu, T., Drögemüller, P., Yu, Q., Ding, Y., Li, Y. (2020). Enhancing deteriorated heat transfer of supercritical nitrogen in a vertical tube with wire matrix insert. International Journal of Heat and Mass Transfer, 162. DOI: 10.1016/j.ijheatmasstransfer.2020.120358 - 2020 - в издания, индексирани в Scopus или Web of Science
    12. He, T., Lin, W. (2020). Energy saving research of natural gas liquefaction plant based on waste heat utilization of gas turbine exhaust. Energy Conversion and Management, 225. DOI: 10.1016/j.enconman.2020.113468 - 2020 - в издания, индексирани в Scopus или Web of Science
    13. Rößler, F., Thomas, I., Freko, P., Zander, H.-J., Rehfeldt, S., Klein, H. (2020). Dynamic simulation with digital twins of heat exchangers. Proceedings of the AIChE Annual Meeting, 2020-November. ISBN: 978-081691114-1. - 2020 - в издания, индексирани в Scopus или Web of Science
    14. Ebrahimi, A., Ghorbani, B., Taghavi, M. (2021). Pinch and exergy evaluation of a liquid nitrogen cryogenic energy storage structure using air separation unit, liquefaction hybrid process, and Kalina power cycle. Journal of Cleaner Production, 305. DOI: 10.1016/j.jclepro.2021.127226. - 2021 - в издания, индексирани в Scopus или Web of Science
    15. Wang, X., Kang, W., Niu, X., Wang, X., Wang, L. (2021). An investigation on thermal conductivity of constructal-filler polymer composites. International Communications in Heat and Mass Transfer, 126. DOI: 10.1016/j.icheatmasstransfer.2021.105411. - 2021 - в издания, индексирани в Scopus или Web of Science
    16. Wang, X., Niu, X., Kang, W., Wang, X., Wang, L. (2021). Enhanced Effective Thermal Conductivity of Composite Materials by Incorporating Constructal Fillers. International Journal of Thermophysics, 42 (7). DOI: 10.1007/s10765-021-02862-5. - 2021 - в издания, индексирани в Scopus или Web of Science
    17. Howard, J., Hasan, N., Knudsen, P. (2021). Thermal-Hydraulic Characterization of Shell-Side Flow in a Cryogenic Coiled Finned-Tube Heat Exchanger. Journal of Heat Transfer, 143 (5). DOI: 10.1115/1.4049961 - 2021 - в издания, индексирани в Scopus или Web of Science
    18. Arnaiz del Pozo, C., Jiménez Álvaro, Á., Rodríguez Martín, J., López Paniagua, I. (2021). Efficiency evaluation of closed and open cycle pure refrigerant cascade natural gas liquefaction process through exergy analysis. Journal of Natural Gas Science and Engineering, 89. DOI: 10.1016/j.jngse.2021.103868. - 2021 - в издания, индексирани в Scopus или Web of Science
    19. Park, J., Lim, H., Rhee, G.H., Karng, S.W. (2021). Catalyst filled heat exchanger for hydrogen liquefaction. International Journal of Heat and Mass Transfer, 170. DOI: 10.1016/j.ijheatmasstransfer.2021.121007. - 2021 - в издания, индексирани в Scopus или Web of Science
    20. Borri, E., Tafone, A., Romagnoli, A., Comodi, G. (2021). A review on liquid air energy storage: History, state of the art and recent developments. Renewable and Sustainable Energy Reviews, 137. DOI: 10.1016/j.rser.2020.110572. - 2021 - в издания, индексирани в Scopus или Web of Science
    21. Hu, H., Li, J., Xie, Y., Chen, Y. (2021). Experimental investigation on heat transfer characteristics of flow boiling in zigzag channels of printed circuit heat exchangers. International Journal of Heat and Mass Transfer, 165. DOI: 10.1016/j.ijheatmasstransfer.2020.120712. - 2021 - в издания, индексирани в Scopus или Web of Science
    22. Cai, Y., Yang, F., Wu, L., Shu, Y., Qu, G., Fakhri, A., Kumar Gupta, V. (2021). Hydrothermal-ultrasonic synthesis of CuO nanorods and CuWO4 nanoparticles for catalytic reduction, photocatalysis activity, and antibacterial properties. Materials Chemistry and Physics, 258. DOI: 10.1016/j.matchemphys.2020.123919 - 2021 - в издания, индексирани в Scopus или Web of Science
    23. Yang, S., Zhao, Z., Zhang, Y., Chen, Z., Yang, M. (2021). Effects of fin arrangements on thermal hydraulic performance of supercritical nitrogen in printed circuit heat exchanger (2021) Processes, 9 (5). DOI: 10.3390/pr9050861. - 2021 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science