Autors: Trifonov, R. I., Nakov, O. N., Mladenov, V. M.
Title: Artificial intelligence in cyber threats intelligence
Keywords: Artificial intelligence methods, Behaviour Assessment, Cyber threats, Intelligent method, Military intelligence, Remote networks, Sequential feature selections, Technical universities

Abstract: In the field of Cyber Security there has been a transition from the stage of Cyber Criminality to the stage of Cyber War over the last few years. According to the new challenges, the expert community has two main approaches: to adopt the philosophy and methods of Military Intelligence, and to use Artificial Intelligence methods for counteraction of Cyber Attacks. This paper describes some of the results obtained at Technical University of Sofia in the implementation of project related to the application of intelligent methods for increasing the security in computer networks. The analysis of the feasibility of various Artificial Intelligence methods has shown that a method that is equally effective for all stages of the Cyber Intelligence cannot be identified. While for Tactical Cyber Threats Intelligence has been selected and experimented a Multi-Agent System, the Recurrent Neural Networks are offered for the needs of Operational Cyber Threats Intelligence.

References

    Issue

    International Conference on Intelligent and Innovative Computing Application, Holiday Inn Mauritius Mon Tresor, Plaine Magnien; Mauritius; 6 December 2018 through 7 December 2018, vol. ICONIC 2018, pp. Article number 8601235, 2019, Mauritius, IEEE Inc, DOI: 10.1109/ICONIC.2018.8601235

    Copyright IEEE

    Цитирания (Citation/s):
    1. Kinyua J.,Awuah L., Ai/ml in security orchestration, automation and response: Future research directions, Intelligent Automation and Soft Computing, Open Access, Volume 28, Issue 2, Pages 527 - 545, 2021, DOI 10.32604/iasc.2021.016240 - 2021 - в издания, индексирани в Scopus или Web of Science
    2. Madi, T., Alameddine, H. A., Pourzandi, M., & Boukhtouta, A. (2021). NFV security survey in 5G networks: A three-dimensional threat taxonomy. Computer Networks, 108288. - 2021 - в издания, индексирани в Scopus или Web of Science
    3. Piconi, J., Maruatona, O., Ng, A., Kayes, A. S. M., & Watters, P. A. (2021). A Machine Learning-Based Cyber Defence System for an Intelligent City. In Developing and Monitoring Smart Environments for Intelligent Cities (pp. 271-299). IGI Global. - 2021 - в издания, индексирани в Scopus или Web of Science
    4. Usha, B. A., H. S. Anupama, K. N. Sangeetha, and Ishaan Gonnagar. "Image Steganography using Hybrid Soft Computing Techniques–A Survey." In 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), pp. 1081-1085. IEEE, 2021. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    5. Sharma, Aditi, Kartikey Bhasin, Prerna Gulati, and Santosh Kumar. "Cyberattacks and Security of Cyber-Physical Systems." In Proceedings of the International Conference on Innovative Computing & Communications (ICICC). 2020. - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    6. Tyrsing, William, and Jacob Nilsson. "Mission Partitioner Framework: Ett utökningsbart och flexibelt designförslag." (2020). - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science

    Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus