Autors: Trifonov, R. I., Nakov, O. N., Mladenov, V. M.
Title: Artificial intelligence in cyber threats intelligence
Keywords: Artificial intelligence methods, Behaviour Assessment, Cyber threats, Intelligent method, Military intelligence, Remote networks, Sequential feature selections, Technical universities

Abstract: In the field of Cyber Security there has been a transition from the stage of Cyber Criminality to the stage of Cyber War over the last few years. According to the new challenges, the expert community has two main approaches: to adopt the philosophy and methods of Military Intelligence, and to use Artificial Intelligence methods for counteraction of Cyber Attacks. This paper describes some of the results obtained at Technical University of Sofia in the implementation of project related to the application of intelligent methods for increasing the security in computer networks. The analysis of the feasibility of various Artificial Intelligence methods has shown that a method that is equally effective for all stages of the Cyber Intelligence cannot be identified. While for Tactical Cyber Threats Intelligence has been selected and experimented a Multi-Agent System, the Recurrent Neural Networks are offered for the needs of Operational Cyber Threats Intelligence.

References

    Issue

    International Conference on Intelligent and Innovative Computing Application, Holiday Inn Mauritius Mon Tresor, Plaine Magnien; Mauritius; 6 December 2018 through 7 December 2018, vol. ICONIC 2018, pp. Article number 8601235, 2019, Mauritius, IEEE Inc, DOI: 10.1109/ICONIC.2018.8601235

    Copyright IEEE

    Цитирания (Citation/s):
    1. Kinyua J.,Awuah L., Ai/ml in security orchestration, automation and response: Future research directions, Intelligent Automation and Soft Computing, Open Access, Volume 28, Issue 2, Pages 527 - 545, 2021, DOI 10.32604/iasc.2021.016240 - 2021 - в издания, индексирани в Scopus или Web of Science
    2. Madi, T., Alameddine, H. A., Pourzandi, M., & Boukhtouta, A. (2021). NFV security survey in 5G networks: A three-dimensional threat taxonomy. Computer Networks, 108288. - 2021 - в издания, индексирани в Scopus или Web of Science
    3. Piconi, J., Maruatona, O., Ng, A., Kayes, A. S. M., & Watters, P. A. (2021). A Machine Learning-Based Cyber Defence System for an Intelligent City. In Developing and Monitoring Smart Environments for Intelligent Cities (pp. 271-299). IGI Global. - 2021 - в издания, индексирани в Scopus или Web of Science
    4. Usha, B. A., H. S. Anupama, K. N. Sangeetha, and Ishaan Gonnagar. "Image Steganography using Hybrid Soft Computing Techniques–A Survey." In 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), pp. 1081-1085. IEEE, 2021. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    5. Sharma, Aditi, Kartikey Bhasin, Prerna Gulati, and Santosh Kumar. "Cyberattacks and Security of Cyber-Physical Systems." In Proceedings of the International Conference on Innovative Computing & Communications (ICICC). 2020. - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    6. Tyrsing, William, and Jacob Nilsson. "Mission Partitioner Framework: Ett utökningsbart och flexibelt designförslag." (2020). - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    7. 8. Dutta, A. and Kant, S., 2021, October. Implementation of Cyber Threat Intelligence Platform on Internet of Things (IoT) using TinyML Approach for Deceiving Cyber Invasion. In 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) (pp. 1-6). IEEE. - 2021 - в издания, индексирани в Scopus или Web of Science
    8. Juneja, A., Juneja, S., Bali, V., Jain, V. and Upadhyay, H., 2021. Artificial intelligence and cybersecurity: current trends and future prospects. The Smart Cyber Ecosystem for Sustainable Development, pp.431-441. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    9. 11. Naik, B., Mehta, A., Yagnik, H. and Shah, M., 2021. The impacts of artificial intelligence techniques in augmentation of cybersecurity: a comprehensive review. Complex & Intelligent Systems, pp.1-18. - 2021 - в издания, индексирани в Scopus или Web of Science
    10. Younus, Ahmed Muayad. "Utilization Of Artificial Intelligence (Ann) In Project Management Services: A Proposed Model of Application." CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES 2, no. 10 (2021): 121-131. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    11. Ospanova, A.B., Tuleuov, B.I., Tokkuliyeva, A.K., Kussepova, L.T. and Zharkimbekova, A.T., 2021, November. Intelligent Mobile Hardware-Software Device for Automated Testing and Monitoring of Computer Networks Based on Raspberry Pi. In 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE) (pp. 396-400). IEEE. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    12. Gautam, K., 2021. A Review on Various Techniques of AI Defender. Journal of Advanced Research in Applied Artificial Intelligence and Neural Network, 4(1), pp.1-6. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    13. 15. Ivanov, S. and Hinov, N., 2021, October. Smart System for Control and Monitoring a DC Motor. In 2021 29th National Conference with International Participation (TELECOM) (pp. 57-60). IEEE. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    14. 4) Dushyant, K., Muskan, G., Gupta, A. and Pramanik, S., 2022. Utilizing Machine Learning and Deep Learning in Cybesecurity: An Innovative Approach. Cyber Security and Digital Forensics, pp.271-293. (Google Scholar) - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    15. 6) Habib Ullah Khan, Muhammad Zain Malik, Mohammad Kamel Bader Alomari, Sulaiman Khan, Alanoud Ali S. A. Al-Maadid, Mostafa Kamal Hassan, Khaliquzzaman Khan, "Transforming the Capabilities of Artificial Intelligence in GCC Financial Sector: A Systematic Literature Review", Wireless Communications and Mobile Computing, vol. 2022, Article ID 8725767, 17 pages, 2022. https://doi.org/10.1155/2022/8725767 (Scopus) - 2022 - в издания, индексирани в Scopus или Web of Science
    16. 12) Kaushik, D., Garg, M., Gupta, A. and Pramanik, S., 2022. Application of machine learning and deep learning in cybersecurity: An innovative approach. In An Interdisciplinary Approach to Modern Network Security (pp. 89-109). CRC Press. (Google Scholar) - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science

    Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus