Autors: Chernyakova K., Tzaneva, B. R., Vrublevsky I., Videkov, V. H. Title: Effect of aluminum anode temperature on growth rate and structure of nanoporous anodic alumina Keywords: Nanoporous anodic alumina; Surface morphology;Electrolyte te Abstract: In the present study, we investigated the effect of an anode temperature on current transient process during porous anodic alumina growth and morphology of the anodic layers. Alumina films were formed in a 0.4 M oxalic acid at a constant voltage mode and electrolyte temperature. The temperature of the Al anode was controlled by thermoelectric Peltier element and varied in the range of 5-60 ⁰C. Surface morphology of both sides of anodic films and their cross-sections were analyzed by scanning electron microscopy (SEM) with subsequent statistical analysis of the SEM images by ImageJ software. It was found that when anode temperature was increased from 5 to 50 °С the pores diameter and interpore distance has not changed, but the porous structure became more ordered. According to these results, the rate of chemical dissolution of the barrier layer and pore walls did not depend on the anode temperature. At the anode temperature of 60 °С, pores diameter has increased 1.7 times and .. References Issue
Copyright Institute of Physics Publishing |
Цитирания (Citation/s):
1. P. Chilimoniuk, R.P. Socha, and T. Czujko, Materials Nanoporous anodic aluminum-iron oxide with a tunable band gap formed on the FeAl3 intermetallic phase. Materials, 2020, 13, 3471; doi:10.3390/ma13163471 - 2020 - в издания, индексирани в Scopus или Web of Science
2. Domagalski, J. T., Xifre-Perez, E., & Marsal, L. F. (2021). Recent advances in nanoporous anodic alumina: Principles, engineering, and applications. Nanomaterials, 11(2), 1-47. doi:10.3390/nano11020430 - 2021 - в издания, индексирани в Scopus или Web of Science
3. Girginov, C., Kozhukharov, S., Tsanev, A., & Dishliev, A. (2021). Characterization of anodized al 1050 with electrochemically deposited cu, ni and Cu/Ni and their behavior in a model corrosive medium. Journal of Electrochemical Science and Technology, 12(2), 188-203. doi:10.33961/JECST.2020.01235 - 2021 - в издания, индексирани в Scopus или Web of Science
4. Poznyak, A., Pligovka, A., Laryn, T., & Salerno, M. (2021). Porous alumina films fabricated by reduced temperature sulfuric acid anodizing: Morphology, composition and volumetric growth. Materials, 14(4), 1-16. doi:10.3390/ma14040767 - 2021 - в издания, индексирани в Scopus или Web of Science
5. Roslyakov, I.V., Sotnichuk, S.V., Kushnir, S.E., Trusov, L.A., Bozhev, I.V. & Napolskii, K.S. 2022, "Pore Ordering in Anodic Aluminum Oxide: Interplay between the Pattern of Pore Nuclei and the Crystallographic Orientation of Aluminum", Nanomaterials 2022, 12(9), 1417; https://doi.org/10.3390/nano12091417 - 2022 - в издания, индексирани в Scopus или Web of Science
6. Zichu, Z., Yajie, L. & Lijing, Y. 2022, "Review - The Variation of Anodization Conditions and the Structural Properties of Nanoporous Anodic Alumina (NAA) within Different Acidic Solutions", Journal of the Electrochemical Society, vol. 169, no. 4. 043503 DOI 10.1149/1945-7111/ac613d - 2022 - в издания, индексирани в Scopus или Web of Science
7. Eessaa A.K., El-Shamy A.M., Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies, (2023) Microelectronic Engineering, 279, art. no. 112061, DOI: 10.1016/j.mee.2023.112061 - 2023 - в издания, индексирани в Scopus или Web of Science
8. Michalska-Domańska M., Dhoble S.J., Quantum dots made with using of anodic aluminum oxide template: fabrication and application, (2023) Quantum Dots: Emerging Materials for Versatile Applications, pp. 215 - 233, DOI: 10.1016/B978-0-323-85278-4.00021-0 - 2023 - в издания, индексирани в Scopus или Web of Science
9. Dai X., Yuan Y., Liao R., Ci W., Preparation and Experimental Studies of Novel Anti-icing Aluminum Conductors to Enhance the Transmission Capacity, (2023) 2023 6th International Conference on Energy, Electrical and Power Engineering, CEEPE 2023, pp. 32 - 36, DOI: 10.1109/CEEPE58418.2023.10166762 - 2023 - в издания, индексирани в Scopus или Web of Science
10. Kumar Y.P., Kaviti A.K., Swetha S., Influence of Various Electrolytes on Surface Morphology of AAO–A Brief Review, (2023) Lecture Notes in Mechanical Engineering, pp. 171 - 182, DOI: 10.1007/978-981-99-3386-0_14 - 2023 - в издания, индексирани в Scopus или Web of Science
11. K. Z. Xie, Y. Li, X. T. Che, J. H. Cheng, X. Hu and Z. Y. Ling, Synthesis of Porous Anodic Alumina Featuring a Periodic Pore Structure by Regulating the Anode Temperature, 2024 J. Electrochem. Soc. 171, 123507, DOI 10.1149/1945-7111/ada0f1 - 2024 - в издания, индексирани в Scopus или Web of Science
12. Ghosh S.N., Talukder S., Decrypting the thermal effects on the electric field-induced material formation process on Cr thin films, (2024) Physica Scripta, 99 (1), art. no. 015011, DOI: 10.1088/1402-4896/ad0a26 - 2024 - в издания, индексирани в Scopus или Web of Science
13. Kozhukharov S., Girginov C., Portolesi S., Tsanev A., Lilova V., Petkov P., Optimal current density for cathodic CeCC deposition on anodized AA2024-T3 aircraft alloy, (2024) Journal of Applied Electrochemistry, 54 (12), pp. 2887 - 2918, DOI: 10.1007/s10800-024-02143-7 - 2024 - в издания, индексирани в Scopus или Web of Science
14. Girginov C., Portolesi S., Kozhukharov S., Tsanev A., Lilov E., Petkov P., Selection of appropriate electrochemical deposition regime for cerium conversion coating on anodized AA2024-T3 aircraft alloy, (2024) Journal of Applied Electrochemistry, 54 (5), pp. 1171 - 1202, DOI: 10.1007/s10800-023-02012-9 - 2024 - в издания, индексирани в Scopus или Web of Science
15. Skibińska K., Żabiński P., Nanocones: A Compressive Review of Their Electrochemical Synthesis and Applications, (2024) Materials, 17 (13), art. no. 3089, DOI: 10.3390/ma17133089 - 2024 - в издания, индексирани в Scopus или Web of Science
16. Ayalew A.A., Han X., Sakairi M., Effect of substrate temperature and electrolyte composition on the fabrication of through-hole porous AAO membrane with SF-MDC, (2024) Materials Chemistry and Physics, 323, art. no. 129658, DOI: 10.1016/j.matchemphys.2024.129658 - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science